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Abstract. We introduce a graphical interactive tool, named GOAL,
that can assist the user in understanding Büchi automata, linear tempo-
ral logic, and their relation. Büchi automata and linear temporal logic are
closely related and have long served as fundamental building blocks of
linear-time model checking. Understanding their relation is instrumental
in discovering solutions to model checking problems or simply in using
those solutions, e.g., specifying a temporal property directly by an au-
tomaton rather than a temporal formula so that the property can be
verified by an algorithm that operates on automata.
One main function of the GOAL tool is translation of a temporal for-
mula into an equivalent Büchi automaton that can be further manipu-
lated visually. The user may edit the resulting automaton, attempting
to optimize it, or simply run the automaton on some inputs to get a
basic understanding of how it operates. GOAL includes a large number
of translation algorithms, most of which support past temporal opera-
tors. With the option of viewing the intermediate steps of a translation,
the user can quickly grasp how a translation algorithm works. The tool
also provides various standard operations and tests on Büchi automata,
in particular the equivalence test, which is essential for checking if an
automaton created by the user is correct in that it is equivalent to some
reference automaton. Several use cases are elaborated to show how these
GOAL functions may be combined to facilitate the learning and teaching
of Büchi automata and linear temporal logic.

1 Introduction

The model-checking approach to formal verification of concurrent systems seeks
to automatically verify if the given system represented by an abstract model
satisfies its specification [2]. Because of its proven effectiveness and ease of use,
model checking has become a viable alternative to simulation and testing in
industry. Model checkers are also increasingly exploited by verification tools
based on deductive (theorem proving) methods, as the work horses for decidable
verification subtasks [28].
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In the so-called linear-time model checking, a concurrent system is equated
semantically with a set of infinite computations and its desired behavioral prop-
erties are then specified in terms of those computations. The specification of a
behavioral property typically asserts temporal dependency between occurrences
of certain events (represented by propositions) and linear temporal logic has thus
become a particularly popular class of languages for specification. Temporal de-
pendency between events may also be expressed with Büchi automata, which are
finite automata operating on infinite words (that correspond to infinite compu-
tations). Indeed, Büchi automata and linear temporal logic are closely related.
It has been shown that Büchi automata and a variant of linear temporal logic
called quantified propositional temporal logic (QPTL) are expressively equiva-
lent, though translation between the two formalisms is highly complex [14]. For
the pure propositional temporal logic (PTL), practically feasible algorithms ex-
ist for translating a PTL formula into an equivalent Büchi automaton [12, 8, 3,
6], though not vice versa.

As Büchi automata are also suitable as abstract system models, many re-
searchers have advocated a unified model-checking approach based on automata
[38]. In this automata-theoretic approach, the negation of the temporal specifi-
cation formula is translated into an automaton, representing the bad behaviors.
The intersection of the system automaton and the negated-specification automa-
ton is then constructed and checked for emptiness. If the intersection automaton
accepts no input, i.e., the system and the negated specification do not have
any common behavior, then the system is correct with respect to the original
specification formula.

Despite the possibility of mechanical translation, a temporal formula and its
equivalent Büchi automaton are two very different artifacts and their correspon-
dence is not easy to grasp. Temporal formulae describe temporal dependency
without explicit references to time points and are in general more abstract, while
Büchi automata “localize” temporal dependency to relations between states and
tend to be of lower level. Understanding their relation is instrumental in dis-
covering algorithmic solutions to model checking problems or simply in using
those solutions, e.g., specifying a temporal property directly by an automaton
rather than a temporal formula so that the property can be verified by an algo-
rithm that operates on automata. To enhance this understanding, it helps to go
through several translation algorithms with different input temporal formulae or
simply by examining more examples of temporal formulae and their equivalent
Büchi automata. This learning process, however, is tedious and prone to mis-
takes for the student, while preparing the material is very time-consuming for
the instructor. Tool support is needed.

In this paper, we introduce a graphical interactive tool, named GOAL
(which stands for “Graphical Tool for Omega-Automata and Logics” and is
available at http://goal.im.ntu.edu.tw), that has been designed and imple-
mented for this purpose. One main function of the GOAL tool is translation
of a QPTL formula into an equivalent Büchi automaton that can be further
manipulated visually. The user may edit the resulting automaton, attempting
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to optimize it, or simply run the automaton on some inputs to get a basic un-
derstanding of how it operates. GOAL includes a large number of translation
algorithms, most of which support past temporal operators. With the option of
viewing the intermediate steps of a translation, the user can quickly grasp how
a translation algorithm works. The tool also provides various standard opera-
tions and tests on Büchi automata, in particular the equivalence test, which is
essential for checking if an automaton created by the user is correct in that it
is equivalent to some reference automaton. Several use cases are elaborated to
show how these GOAL functions may be combined to facilitate the learning and
teaching of Büchi automata and linear temporal logic. We believe that, with
an easy access to temporal formulae and their graphically presented equivalent
Büchi automata, the student’s understanding of the two formalisms and their
relation will be greatly enhanced.

To the best of our knowledge, GOAL is the first graphical interactive tool
that is designed for learning and teaching Büchi automata and linear temporal
logic. It supports past temporal operators and quantification over propositional
variables. There are other tools that provide translation of temporal formulae
into Büchi automata, e.g., SPIN [11], LTL2BA [6], Wring [31], MoDeLLa [27],
and LTL2Buchi [9]. However, none of them provide facilities for visually ma-
nipulating automata and the temporal logics they support are less expressive.
The operations and tests on Büchi automata provided by GOAL are also more
comprehensive than those by other tools.

Earlier versions of GOAL have been introduced and suggested for educa-
tional purposes in an informal workshop [36] and for supplementing automata-
theoretical model checkers such as SPIN in a conference [35]. Compared to these
earlier versions, the version of GOAL described here includes a much larger
collection of translation, simplification, and complementation algorithms. This
should meet the needs of more users. Moreover, an option to play out the inter-
mediate steps of a translation is provided for most of the translation algorithms.
This should expedite the learning of a translation algorithm and hence the un-
derstanding of the relation between a temporal formula and its equivalent Büchi
automaton. The LTL2BA tool can also show intermediate steps; however, this
is done in texts and is not very friendly for the learner. More recently, we have
also started to explore the usages of GOAL as a research tool [37].

The rest of this paper is organized as follows. Section 2 gives a brief overview
of Büchi automata, linear temporal logic, and their roles in model-checking. In
Section 3, we present the GOAL tool, detailing its main functions along with
some highlights on their implementation. In Section 4, several basic usages of
GOAL are elaborated for educational purposes. Three more advanced examples
can be found in Section 5. Section 6 concludes with some remarks.
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2 Büchi Automata, Linear Temporal Logic, and Model
Checking

This section gives a brief overview of Büchi automata and linear temporal logic
along with their roles in model checking. The reader who is familiar with these
subjects may safely skip this section. For the reader who is not familiar with
these subjects and wishes to know more about them, a more detailed tutorial
with precise formal definitions can be found in the Appendix.

Büchi Automata. Büchi automata are a variant of ω-automata, which are finite-
state automata operating on infinite words. A Büchi automaton accepts those
inputs that can drive it through some accepting state infinitely many times. Two
examples of Büchi automata will be given subsequently when we contrast them
with their equivalent temporal formulae. (Non-deterministic) Büchi automata
are closed under intersection and complementation [1, 10]. Complementation of
a Büchi automaton, unlike in the case of finite words, is a hard problem and has
a well-known exponential worst case lower bound of 2Ω(n logn) [22]. Solutions
to this problem are often complicated and difficult to learn [30, 26, 15, 16, 24, 5].
Minimizing the number of states of a Büchi automaton is also a hard problem [4,
31].

Generalized Büchi automata have multiple sets of accepting states. They nat-
urally arise as intermediate forms in the translation of temporal formulae into
Büchi automata. A generalized Büchi automaton accepts those inputs that can
drive it through some state of each accepting set infinitely many times. General-
ized Büchi automata and many other variants of ω-automata are equivalent to
Büchi automata in expressive power.

True~p ~q

q
s0 s1

p ~q
~p

q

q

p ~q
s0 s1

(a) 2(p→ −3q) (b) 2(p→ p U q)

Fig. 1. Two PTL formulae and their respective equivalent Büchi automata, where
the double-circled darker states are accepting states. Note that True is a shorthand
representing any input symbol from {pq, p∼q, ∼pq, ∼p∼q} and q representing any input
symbol from {pq, ∼pq}.

Linear Temporal Logic. Linear temporal logic (LTL) has as its semantic models
infinite sequences of states, which can also be seen as infinite words over a
suitable alphabet. We use Propositional Temporal Logic (PTL) to refer to the
pure propositional version of LTL, for which a state is simply a subset of atomic
propositions holding in that state. PTL formulae are constructed by applying
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boolean and temporal operators to atomic propositions drawn from a predefined
universe. For instance, the formula 2(p→ −3q) combines two temporal operators,
2 (always) and −3 (once), to say that “every p is preceded by a q” or equivalently
“the first p does not occur before the first q”. The formula 2(p→ p U q) says that
“once p becomes true, it will remains true continuously until q becomes true,
which must eventually occur”. In the literature, there exist two versions of PTL.
One contains both past and future temporal operators (for example, in Manna
and Pnueli’s books [20, 21]), while the other contains only future operators (for
example, in Clarke et al. [2], referred to as LTL there). Although these two
versions are equivalent in expressive power, past operators provide a more concise
and intuitive way for constructing some specifications [18].

Every PTL formula can be translated into an equivalent Büchi automaton
(but not vice versa) in the sense that each infinite sequence satisfying the formula
corresponds to an infinite word accepted by the automaton [12, 7]. As an illus-
tration, we examine the Büchi automata that are equivalent to the two example
PTL formulae described in the previous paragraph. The alphabet for both au-
tomata is {pq, p∼q, ∼pq, ∼p∼q} (a set of four “structured” symbols). The Büchi
automaton in Figure 1(a) is equivalent to the formula 2(p → −3q). From the
initial state s0, there is no transition for p∼q, ensuring that “the first p does not
occur before the first q”. The Büchi automaton in Figure 1(b) is equivalent to
the formula 2(p→ p U q). An occurrence of p∼q brings the automaton from s0
to s1, where no transition is possible for ∼p∼q. So, once p becomes true, it has
to remain true until q becomes true. In addition, as s1 is not an accepting state,
either pq or ∼pq must occur, bringing the automaton to the accepting state s0.

PTL is strictly less expressive than Büchi automata. The property “p is true
at every even position” (an infinite word or sequence starts with position 0),
referred to as “Even p” here, is a typical example for showing the difference.
(In [39], Wolper proved that for any given m ≥ 2, the property “p is true at
every (km)-th position, where k ≥ 0” cannot be specified by PTL.) Quantified
Propositional Temporal Logic QPTL [29] extends PTL by additionally allowing
quantification over atomic propositions. With the extension, QPTL is equivalent
to Büchi automata in expressive power. Every QPTL formula can be algorith-
mically translated into an equivalent Büchi automaton and vice versa [14].

Model Checking. Model checking seeks to automatically verify if a given system
satisfies its specification [2]. The system is typically modeled as a Kripke struc-
ture, a state-transition graph where each state is labeled with those propositions
that hold in the state; fairness may be imposed on how the transitions should
be taken. When the specification is given by a linear temporal logic formula, the
model checker determines if every computation (sequence of states) generated
by the Kripke structure satisfies, or is a model of, the temporal formula.

The system may also be modeled as a Büchi automaton; in fact, every Kripke
structure (with or without the usual fairness conditions) corresponds to some
Büchi automaton. As the specification formula can also be translated into a
Büchi automaton, this results in a uniform treatment of both the system and
its specification [38]. Suppose A is the automaton modeling the system and Bϕ
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the automaton representing the specification ϕ. Let L(A) and L(Bϕ) denote
respectively the languages of the two automata. The problem of model checking
translates into that of language containment L(A) ⊆ L(Bϕ). Let L(Bϕ) denote
the complement of L(Bϕ) and Bϕ the complement of Bϕ. The problem is then
equivalent to checking if L(A) ∩ L(Bϕ) = ∅, i.e., L(A ∩ Bϕ) = ∅. As Büchi
automata are closed under complementation and intersection, this reduces to
the emptiness problem of Büchi automata.

However, complementing a Büchi automaton is expensive. A better alter-
native is to negate first the specification formula ϕ and obtain the equivalent
automaton B¬ϕ such that L(B¬ϕ) = L(Bϕ). Now, to check if L(A) ∩ L(Bϕ) =
L(A) ∩ L(B¬ϕ) = ∅, one only needs to construct the intersection of A and B¬ϕ
and complementation is avoided.

3 Functions of GOAL

In this section, we describe the main functions of GOAL along with some high-
lights of their implementation. The current version of GOAL provides the fol-
lowing functions:

– Drawing and Running Büchi Automata: The user can easily point-and-
click and drag-and-drop to create a Büchi automaton or a generalized Büchi
automaton; see Figure 2(a). After an automaton is created, the user can run
it through some input to get a feel of what kind of inputs the automaton
accepts, as shown in Figure 2(b).

(a) A Büchi automaton drawn by (b) Running the Büchi automaton on
the user an input.

Fig. 2. An example of drawing and running a Büchi automaton with GOAL. The inset
window in Part (a) shows the set of accepting states. In Part (b), the pair of “{” and “}”
in the input indicates an infinite repetition. The bottom pane shows every reachable
configuration (including the state and the remaining input) of the automaton on the
input, each box representing a configuration. In each box, the lighter part of the input
has been consumed by the automaton (which leads the automaton to the state in the
same box) and the darker part is the remaining input to be consumed.
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– Testing Büchi Automata: Emptiness, universality, simulation relation,
(language) containment, and equivalence tests are supported. In the empti-
ness test, if the given Büchi automaton is non-empty, GOAL highlights the
path that corresponds to an accepted input. The equivalence test of two
Büchi automata is built on top of the containment test which in turn re-
lies on the intersection and complementation operations and the emptiness
test. An equivalence test can also be performed on a Büchi automaton and
a temporal formula.

Fig. 3. A screen shot of the step-by-step translation of a temporal formula into an
equivalent Büchi automaton using the Tableau algorithm. The given PTL formula is

23p. The lower window displays explanatory descriptions, while the steps are played
out in the upper window.

– Translating QPTL (and PTL) Formulae into Büchi Automata: Nine
algorithms have been implemented for temporal formula to Büchi automa-
ton translation; see Table 1. Four (Tableau, Incremental Tableau, Temporal
Tester, and PLTL2BA) of them originally support past operators. We have
extended three more (GPVW, LTL2AUT, LTL2AUT+) to allow past opera-
tors. All these nine algorithms are further extended to support quantification
on propositions. To help learning, translations by five of the nine algorithms
(Tableau, Incremental Tableau, GPVW, LTL2AUT, LTL2AUT+) can be
viewed step by step, as shown in Figure 3. The user can “play” the trans-
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Translation Complementation

Tableau [21], Incremental Tableau [12], Safra [26], WAPA [32],
Temporal Tester [13], GPVW [8], GPVW+ [8], WAA [17], Piterman [24]
LTL2AUT [3], LTL2AUT+ [33], Simplification
LTL2BA [6], PLTL2BA [7] Simulation [31], Pruning fair sets [31]

Table 1. Major algorithms in GOAL.

lation, “pause” it, and then “resume” it. It is also possible to translate a
formula into a generalized Büchi automaton, instead of going all the way to
a Büchi automaton.
Currently, GOAL imposes a restriction that a quantifier must not fall in
the scope of a temporal operator. This restriction does not sacrifice expres-
siveness, as QPTL with the restriction is as expressive as the unrestricted
QPTL [30]. The supported boolean and temporal operators and their input
formats are as follows:

Operator ¬ ∨ ∧ → ↔ © 2 3 U W −© ∼© −2 −3 S B ∃ ∀
Format 1 ~ \/ /\ --> <--> () [] <> U W (-) (~) [-] <-> S B E A
Format 2 ~ \/ /\ --> <--> X G F U W Y Z H O S B E A

– Boolean Operations on Büchi Automata: The three standard boolean
operations—union, intersection, and complementation are supported. Büchi
complementation is crucial in the implementation of language containment
and equivalence tests, which are perhaps the most distinct functions of
GOAL. Algorithms for Büchi complementation, because of their technical
difficulty, are themselves a separate topic of learning (and also of research).
Four algorithms have been implemented in GOAL for Büchi complemen-
tation; see Table 1 for a listing. The classic Safra’s construction [26] was
there when GOAL was first made available to the public. The other three
newly added complementation algorithms are complementation via weak al-
ternating parity automata (WAPA) [32], complementation via weak alternat-
ing automata (WAA) [16], and Piterman’s construction [24]. Cross-checking
greatly increases our confidence in the correctness of the different comple-
mentation algorithms and hence the correctness of the language containment
and equivalence tests. Both Safra’s and Piterman’s constructions may be
viewed in stages, which will be convenient for learning.

– Tests on QPTL Formulae: Satisfiability and validity tests are supported.
The equivalence test between two formulae is not supported directly, but can
be easily checked by connecting the two formulae with the mutual implication
operator (↔) and testing the resulting formula for validity.

– Simplifying Büchi Automata: The user can use the simplification (by
simulation) operation to find states of a Büchi automaton that simulate
each other and merge those states; there is also an operation for simplifying
generalized Büchi Automata by pruning fair sets (acceptance sets). The al-
gorithm for finding simulation relations is an adaption of that proposed by
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Somenzi et al. [31]. Figure 4 shows an example of running the simplification
algorithm on an automaton translated from the formula 2(p→ pW q) (once
p becomes true, it will remain true continuously until q becomes true, which
may never occur). To understand the original machine-translated automaton
is somewhat difficult. After the simplification, one gets a smaller automaton,
as shown in Figure 4(b), which is easier to understand.

(a) The automaton before simplification (b) The automaton after simplification

Fig. 4. A demonstration of the simplification algorithm.

– Exporting Büchi Automata as Promela Code: Once an automaton has
been defined and tested, the user can export it in the Promela (the system
modeling language of SPIN) syntax on the screen or as a file. This makes it
possible to use GOAL as a graphical specification definition frontend to an
automata-theoretic model checker like SPIN.

– The Automata Repository: This repository contains a collection of fre-
quently used temporal formulae and their corresponding equivalent automata,
which have been optimized by hand and checked by the GOAL tool itself. For
beginners, this should be very convenient for learning the relation between
Büchi automata and linear temporal logic.

GOAL is implemented in Java for the ease of installation. Its automata and
graph modules were adapted and extended from those of JFLAP [25], a tool for
classic theory of computation. The most complicated algorithms implemented in
GOAL are those for translating temporal formulae into automata and for com-
plementing and simplifying automata, as summarized in Table 1. QPTL to Büchi
automata translation is done by combining one of the PTL to Büchi automata
translation algorithms with Sistla’s approach for handling quantification [30].
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4 Basic Usages

We suggest in this section a number of basic use cases illustrating how the
GOAL functions may be combined to facilitate the learning and teaching of Büchi
automata and linear temporal logic. A few more advanced cases are discussed in
the next section.

4.1 Viewing How a Büchi Automaton Operates on an Infinite Word

For a student who has taken a course on classic theory of computation, the
key to understanding Büchi automata is to first comprehend the concept of an
infinite word and how a Büchi automaton operates on an infinite word. One
apparent thing to do is examining a few examples of how an infinite word drives
a Büchi automaton through the different states of the automaton, which can be
conveniently carried out with GOAL.

A Büchi automaton for 23p would be a simple enough starting example
for illustrating how a Büchi automaton operates on infinite words. Suppose the
alphabet is simply {p, ∼p}. In GOAL, an infinite word pp∼pppp. . . (with p re-
peating indefinitely) is represented as (p)(p)(∼p){(p)}. Given this infinite word
as an input, the automaton for 23p has infinitely many possible runs. The
teacher can first explain the reason why the acceptance of an infinite word can
be determined within a finite number of steps. GOAL can then be used to create
the automaton, input the infinite word to the automaton, run the automaton for
a few steps, find an accepting run and explain again the reason why; Figure 2(b)
shows a snapshot of one such scenario.

4.2 Translating a Temporal Formula into an Equivalent Büchi
Automaton

Understanding how a temporal formula can be translated into a Büchi automa-
ton is an essential step in learning automata-theoretic model checking. As we
have explained earlier, temporal formulae and Büchi automata are very different
artifacts and it can be very difficult for the student to grasp their correspon-
dence. In the translation function provided by GOAL, the user has an option of
viewing the intermediate steps that a translation goes through. The visual aide
can be very useful. For example, after studying a translation algorithm, the user
can test his understanding of the algorithm by running the algorithm with paper
and pencil and comparing each step with that generated by GOAL.

We suggest that beginners start with the tableau construction of Manna and
Pnueli [21]. Though it generates more states than some others do, this algorithm
is relatively simple and easy to understand. The steps can be easily divided and
their intentions clearly described.
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4.3 Performing Boolean Operations on Büchi Automata

Büchi automata are closed under boolean operations and these operations can be
done algorithmically. To learn any of the boolean operations, the user can per-
form the operation by hand and then verify correctness by checking the equiva-
lence between the resulting automaton (hand-drawn using the automaton editing
function of GOAL) and the machine-generated one (also by GOAL).

(a) The given automaton (for p U q) (b) Determinization into a Rabin automaton

(c) Conversion into a Streett automaton (d) Translation back into a Büchi automaton

Fig. 5. The stages in complementing a Büchi automaton by Safra’s construction.

GOAL is particularly useful for learning the complementation operation,
which is very complex and difficult to understand. This again can be proceeded
by simulating an algorithm by hand and checking correctness by machine. The
GOAL tool provides an option of showing the result of each intermediate stage in
both Safra’s and Piterman’s constructions. For example, Safra’s algorithm com-
plements a Büchi automaton in three stages, as shown in Figure 5: (1) translate
the given automaton into an equivalent deterministic Rabin automaton, (2) com-
plement the Rabin automaton by interpreting it as a Streett automaton, and (3)
translate the Streett automaton back into a Büchi automaton. (A formal defini-
tion of Rabin and Streett automata can be found in the Appendix.)
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4.4 Learning Automata-Theoretic Model Checking

With the ability of translating temporal formulae into equivalent Büchi automata
and performing boolean operations on Büchi automata, GOAL can be used for
learning the basics of automata-theoretic model checking. It should be a help-
ful and interesting exercise for the student to go through the typical verification
steps: (1) prepare a system Büchi automaton for some small verification problem,
e.g., the two-process mutual exclusion problem, (2) write a QPTL formula de-
scribing the system’s safety property (e.g., mutual exclusion) or liveness property
(e.g., starvation freedom), (3) negate the formula and translate it into a Büchi
automaton, representing “bad” behaviors, (4) compute the intersection of the
given system automaton and the translated negative specification automaton,
and (5) check the emptiness of the intersection.

4.5 Developing Specification Automata for a Model Checker

In SPIN, which is a popular tool in model-checking courses, the specification can
either be given as a PTL formula (without past operators) or directly as a Büchi
automaton in Promela code. For a property that is not expressible in PTL,
defining a suitable Büchi automaton becomes necessary. In this case, GOAL
supplements SPIN by providing a convenient graphical interface for drawing
and manipulating Büchi automata. Once the specification automaton has been
successfully constructed and checked, it can be exported as Promela code. One
can then copy-and-paste the Promela code to SPIN’s model file as the “never
claim” (a Büchi automaton specifying all behaviors disallowed by the model)
and continue the model checking procedure as usual.

5 Advanced Examples

Here we give three examples of using GOAL to help understand more difficult
concepts in Büchi automata and linear temporal logic.

5.1 Learning Safety Properties and Safety Formulae

Safety properties are requirements that should be continuously maintained by
the system [19]. A temporal formula is called a safety formula (specifying a safety
property) if it is equivalent to some formula in the canonical form 2p, where p
is a past formula (which contains no future operators) [21]. The correspondence
between a formula and its equivalent canonical safety formula can be hard to
recognize. For example, the formula p W q (read “p wait-for q”, which means p
holds until an occurrence of q or p holds forever) is a safety formula, because it is
equivalent to the canonical safety formula 2( −3¬p→ −3q). The equivalence is not
intuitive, but it can be easily verified with GOAL by either checking the validity
of p W q ↔ 2( −3¬p → −3q) or translating both formulae into Büchi automata
and checking their equivalence, as shown in Figure 6. Further examples include
2p ∨2q ↔ 2( −2p ∨ −2q), ¬(p U ¬q)↔ 2( ∼© −2p→ q), etc.
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(a) The automaton generated from (b) The automaton generated from
p W q 2( −3¬p→ −3q)

Fig. 6. A safety formula and its equivalent canonical formula.

5.2 Understanding Why “Even p” Is QPTL-Expressible but Not
PTL-Expressible

“Even p”, as discussed in Section 2, is a typical case for showing PTL is strictly
less expressive than Büchi automata. A plausible PTL formula for the property
would be “p∧2(p→ ©©p)”. We translate the formula into a Büchi automaton,
as shown in Figure 7(a), and open the “Even p” case in the repository, as shown in
Figure 7(b). An equivalence test shows that the two automata are not equivalent
and displays a counter example, as shown in Figure 7(a). The formula p∧2(p→
©©p) is overly restrictive. Once p holds at some odd position, this formula forces
p to hold at all following odd positions, which is not required by “Even p”.

A correct QPTL formula is ∃t : t ∧2(t↔∼ ©t) ∧2(t→ p). In this formula,
t is an auxiliary variable that is true at all even positions and false at all odd
positions along a computation. From the subformula 2(t→ p), we know that p
must be true when t is true (at even positions), but p can be any value when t
is false (at odd positions). The formula is translated into a Büchi automaton, as
shown in Figure 7(c). An equivalence test between the translated automaton and
the one in the repository can be performed to ensure that the formula indeed
expresses “Even p”.

5.3 Understanding Temporal Assume-Guarantee Formulae

Informally, an assume-guarantee specification asserts that “some property is
guaranteed while the assumption holds”. In the literature [34, 2, 23], we can find
at least three temporal logic formulations:

1. ¬(p U ¬q)
2. 2( ∼© −2p→ q)
3. q W (¬p ∧ q)
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(a) An automaton machine-translated from p ∧ 2(p→ ©©p)

(b) The “Even p” case from the repository (c) An automaton machine-translated from
∃t : t ∧ 2(t↔∼ ©t) ∧ 2(t→ p)

Fig. 7. Automata intended for “Even p”; the one in (a) is incorrect.

Although they look quite different, all the three formulae are in fact equiv-
alent, as shown in Figure 8(a), (b), and (c). There is another similar formula
2( −2p → −2q) [34]. The formula is translated into an equivalent Büchi automa-
ton, as shown in Figure 8(d), and checked to be inequivalent to the previous
three formulae.

6 Conclusion

We have described GOAL and suggested possible usages of the tool. To draw
an analogy with JFLAP [25], a successful visual interactive tool for learning
and teaching classic theory of automata and formal languages that inspired
GOAL, we expect GOAL to be useful as learning and teaching support for
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(a) An automaton equivalent to (b) An automaton equivalent to
¬(p U ¬q) 2( ∼© −2p→ q)

(c) An automaton equivalent to (d) An automaton equivalent to
q W (¬p ∧ q) 2( −2p→ −2q)

Fig. 8. Various temporal formulae for assume-guarantee specifications.

courses on model checking, formal verification, or advanced automata theory
where ω-automata and temporal logic are essential topics. It helps to be able
to see how an automaton, particularly a nondeterministic one, runs on a given
input. A convenient tool for drawing automata or generating automata from
formulae also encourages the students to do more exercises and enhance their
understanding of the subjects.

The first author of this paper has used GOAL in his “Software Development
Methods” course, where linear-time model checking is covered. Although the
emphasis is not on translation algorithms, the students were asked to write the
same specifications with Büchi automata and temporal formulae. With the help
of GOAL, particularly the equivalence test, they were able to quickly validate
their answers. They would also try out a Büchi automaton on several inputs
to get a better understanding of what its language is. For the more aspiring
students, GOAL provides them with guidance on how a Büchi automaton can
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be obtained systematically from a QPTL formula (though not necessarily in an
optimal way).

As the source “Graphical Tool for Omega-Automata and Logics” of the
acronym GOAL suggests, our long-term goal is for the tool to handle the common
variants of ω-automata and the logics that are expressively equivalent to these
automata. For example, besides Büchi and generalized Büchi automata, we have
extended GOAL to support editing and a limited set of operations on Muller,
Rabin, Streett, and Parity automata [10]. Although these variants of ω-automata
do not necessarily have a direct impact on the model-checking process, they are
powerful intermediaries for the development of automata-based algorithms and
will make GOAL complete as a learning and teaching tool.

Acknowledgment. We thank Susan H. Rodger at Duke University for granting
us the permission to use and modify the JFLAP source code.
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A Büchi and Other ω-automata

Büchi automata are the most commonly used type of ω-automata, which extend
finite-state automata to infinite words. An ω-automaton accepts an infinite word
if and only if there exists a run of the automataon on the word that follows some
repetition patterns prescribed by the acceptance condition of the ω-automaton.

Formally, an ω-automaton is a quintuple 〈Σ,Q, δ,Q0,Acc〉:

– Σ is the finite alphabet.
– Q is the finite set of states.
– δ ⊆ Q×Σ ×Q is the transition relation.
– Q0 ⊆ Q is the set of initial states.
– Acc is the acceptance condition. Different acceptance conditions give rise to

different types of ω-automata.

The automata as defined are nondeterministic. An automaton is determinis-
tic if |Q0| = 1 and, for all a ∈ Σ, q1, q2, q3 ∈ Q, (q1, a, q2) ∈ δ and (q1, a, q3) ∈ δ
imply q2 = q3. A run of an ω-automaton on an infinite word a0a1a2 · · · ∈ Σω is
an infinite sequence of states q0q1q2 · · · ∈ Qω such that q0 ∈ Q0 and, for every
i ≥ 0, (qi, ai, qi+1) ∈ δ. Let inf(ρ) be the set of states that appear infinitely many
times in the run ρ.

Büchi automata. The acceptance condition of a Büchi automaton is defined
by a set of accepting states. A word is accepted by a Büchi automaton if and
only if there exists a run of the automaton on the word that passes through at
least one accepting state infinitely often. Formally, the acceptance condition of
a Büchi automaton is a set F ⊆ Q. A run ρ is accepting if inf(ρ) ∩ F 6= ∅.

pp

~p
p

s0 s1 length i︷ ︸︸ ︷
pppp∼ppp∼p . . . pp∼pp∼p

p always holds︷ ︸︸ ︷
pppppppppp . . .

(a) A Büchi automaton. (b) A word accepted by the automaton.

Fig. 9. A Büchi automaton and a word accepted by the automaton.

In Figure 9(a) is a Büchi automaton intended for the property “eventually
always p”. Figure 9(b) shows an infinite word accepted by the automaton (after
the finite prefix of length i, property p always holds). This automaton has a run
ρ = s0s0s0 . . . s0s0︸ ︷︷ ︸

i

s1s1s1 . . . on the word. Since inf(ρ) contains infinitely many

s1, ρ is an accepting run and the word is accepted by the automaton. Note that
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ρ′ = s0s0s0 . . . is also a run of the automaton on the same word, but it is not an
accepting run because it does not contain s1.

Büchi automata recognize ω-regular languages, the infinite-word version of
regular languages. We shall introduce some other variants of ω-automata: gen-
eralized Büchi automata, Muller automata, Rabin automata, Streett automata,
and Parity automata. A language defined by any of these automata is also ω-
regular. All these variants of ω-automata, except deterministic Büchi automata,
are expressively equivalent.

Generalized Büchi automata. The acceptance condition of a generalized
Büchi automaton is defined by a set of acceptance sets {F1, F2, · · · , Fm}, where
Fi ⊆ Q. A word is accepted by a generalized Büchi automaton if and only if
there exists a run of the automaton on the word that infinitely often passes
through at least one accepting state for each acceptance set. In other word, a
run ρ is accepting if, for all i, inf(ρ)∩Fi 6= ∅. The generalized Büchi automaton
is frequently used as an intermediary in temporal formulae to Büchi automata
translation algorithms.

~p ~q

p q

p

~p ~q

p

q

p q

p q

q

pq p

p q

q

~p ~q

~p ~q

s0

s1

s2 s3

Fig. 10. A generalized Büchi automaton with {{s1, s2}, {s1, s3}} as the set of accep-
tance sets.

Figure 10 shows an example of a generalized Büchi automaton. A word is
accepted by this automaton if and only if there exists a run on the word in
which p holds infinitely often and q also holds infinitely often. In the figure, if a
run contains infinitely many s1, then some transition labeled pq will be visited
infinitely often, which satisfies p holds infinitely often and q holds infinitely
often. Otherwise, an accepting run should contain infinitely many s2 and s3. A
transition labeled with q is the only path to visit s2 and one labeled with p is
the only path to visit s3. Therefore, a run containing infinitely many s2 and s3
will satisfy both p holds infinitely often and q holds infinitely often.
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Other ω-automata.

– Muller automata: The acceptance condition of a Muller automaton is a set
of acceptance sets F = {F1, F2, · · · , Fm}, where Fi ⊆ Q. A run ρ is accepting
in a Muller automaton if inf(ρ) ∈ F .

– Rabin automata: The acceptance condition of a Rabin automaton is a set
of acceptance pairs (pairs of sets of states) {(E1, F1), (E2, F2), · · · , (Em, Fm)},
where Ei, Fi ⊆ Q. A run ρ is accepting if, for some i, inf(ρ) ∩ Ei = ∅ and
inf(ρ) ∩ Fi 6= ∅.

– Streett automata: The acceptance condition of a Streett automaton is also
a set of acceptance pairs {(E1, F1), (E2, F2), · · · , (Em, Fm)}, where Ei, Fi ⊆
Q. A run ρ is accepting if, for all i, inf(ρ) ∩ Ei 6= ∅ or inf(ρ) ∩ Fi = ∅.

– Parity automata: The acceptance condition of a Parity automaton is
a mapping c : Q → N. A run ρ is accepting in a Parity automaton if
min{c(q)|q ∈ inf(ρ)} is even.

Intuitively, given a Rabin acceptance pair (E,F ), set E defines the set of
states that should be visited finitely many times while set F defines the set
of states that should be visited infinitely often. An accepting run satisfies at
least one of the Rabin acceptance pairs. The Streett acceptance condition is
dual to the Rabin condition. A run is accepting in a Streett automaton if and
only if it is not accepting in a Rabin automaton with the same structure and
acceptance pairs. A run is accepting in a Muller automaton if and only if the
set of states been visited infinitely often equals one of the acceptance sets. A
parity automaton assumes each state has a parity number. A run is accepting
in a Parity automaton if and only the smallest parity number that is visited
infinitely often is an even number.

~p

p

~p

~p

p

p

~p

p
s0 s1

s2 s3

Fig. 11. A Rabin automaton with {({s0}, {s3})} as the set of acceptance pairs.

In Figure 11 is a deterministic Rabin automaton recognizing “eventually
always p”, which is a language not recognizable by a deterministic Büchi au-
tomaton. In this automaton, {({s0}, {s3})} is the only acceptance pair, which
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forces every accepting run to end with the infinite sequence s3s3s3s3 . . .. Given
a Rabin automaton, a Streett automaton accepting the complement language of
the Rabin automaton can be easily obtained. For example, a Streett automa-
ton recognizing the complement language of the preceding Rabin automaton,
“not eventually always p”, can be obtained by interpreting the acceptance pairs
as Streett acceptance condition. Under this interpretation, a run is accepting if
and only if it does not end with the infinite sequence s3s3s3s3 . . .. Because of the
convenience in getting a complement automaton (from Rabin to Streett or vice
versa), Rabin and Streett automata are used by Safra [26] as the intermediaries
for complementing a Büchi automaton.

There are even other variants of ω-automata. The transition relation can be
more complicated, e.g., in a universal automaton or an alternating automaton.
For further information, we refer the reader to the book by Grädel et al. [10].

B Linear Temporal Logic

PTL. Propositional (Linear) Temporal Logic (PTL) formulae are constructed
by applying boolean and temporal operators to atomic propositions, or boolean
variables, drawn from a predefined universe. Temporal operators are classified
into future operators and past operators. Future operators include © (next), U
(until), 3 (eventually), 2 (always), and W (wait-for). Past operators include ∼©

(before) and S (since), −3 (once), −2 (so-far), B (backto), and −© (previous).
Syntax : Let V be a set of boolean variables. PTL formulae are defined in-

ductively as follows:

– Every variable p ∈ V is a PTL formula.
– If f and g are PTL formulae, then so are ¬f , f ∨g, f ∧g, ©f , 3f , 2f , f U g,
f W g, ∼©f , −©f , −3f , −2f , f S g, and f B g. (¬f ∨ g is also written as f → g
and (f → g) ∧ (g → f) as f ↔ g.)

Semantics: A PTL formula is interpreted over an infinite sequence of states
σ = s0s1s2 · · ·, relative to a position in that sequence. A state is a subset of
V , containing exactly those variables that evaluate to true in that state. If each
possible subset of V is treated as a symbol, then a sequence of states can also be
viewed as an infinite word over 2V . We say a sequence σ satisfies a PTL formula
f or σ is a model of f , denoted σ |= f , if (σ, 0) |= f . Two formulae f and g are
equivalent if all models of f are also models of g and vice versa. The semantics of
PTL in terms of (σ, i) |= f (f holds at the i-th position of σ) is given as follows:

– For a boolean variable p,
• (σ, i) |= p ⇐⇒ p ∈ si

– For boolean connectives,
• (σ, i) |= ¬f ⇐⇒ (σ, i) |= f does not hold
• (σ, i) |= f ∨ g ⇐⇒ (σ, i) |= f or (σ, i) |= g
• (σ, i) |= f ∧ g ⇐⇒ (σ, i) |= f and (σ, i) |= g

– For future temporal operators,
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• (σ, i) |= ©f ⇐⇒ (σ, i+ 1) |= f

That is, ©f holds at position i if and only if f holds at position i + 1,
as visualized below.

0
-

©f

i

f

i+ 1

• (σ, i) |= 3f ⇐⇒ (σ, j) |= f for some j ≥ i

3f holds at position i if and only if f holds at some position j ≥ i:

0
-3f

i

f

j

• (σ, i) |= 2f ⇐⇒ (σ, j) |= f for all j ≥ i

2f holds at position i if and only if f holds at all positions j ≥ i; note
that f also holds at position i:

0
-

2f

f

i

f f f · · ·

• (σ, i) |= f U g ⇐⇒ (σ, k) |= g for some k ≥ i, and (σ, j) |= f for all j,
i ≤ j < k

f U g holds at position i if and only if for some k ≥ i, g holds at k and
f holds at all positions i ≤ j < k:

0
-

f U g
f

i

· · · f g

k

• (σ, i) |= f W g ⇐⇒ (σ, k) |= g for some k ≥ i and (σ, j) |= f for all j,
i ≤ j ≤ k, or (σ, j) |= f for all j ≥ i

f W g holds at position i if and only if f U g or 2f holds at position i.

– For past temporal operators,
• (σ, i) |= ∼©f ⇐⇒ i = 0 or (σ, i− 1) |= f
• (σ, i) |= −©f ⇐⇒ i > 0 and (σ, i− 1) |= f

For some i > 0, ∼©f or −©f holds at position i if and only if f holds at
position i− 1. The difference between ∼©f and −©f occurs at position 0.
∼©f always holds at position 0, where −©f never holds.
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0

∼©f
-

f

i− 1

∼©f
−©f

i

• (σ, i) |= −3f ⇐⇒ (σ, j) |= f for some j, 0 ≤ j ≤ i

−3f holds at position i if and only if f holds at some position 0 ≤ j ≤ i.

0
-f

j

−3f

i

• (σ, i) |= −2f ⇐⇒ (σ, j) |= f for all j, 0 ≤ j ≤ i

−2f holds at position i if and only if for all 0 ≤ j ≤ i, f holds at j.

0
-f · · · f f f f

−2f

i

• (σ, i) |= f S g ⇐⇒ (σ, k) |= g for some 0 ≤ k ≤ i and (σ, j) |= f for all
j, k < j ≤ i

f S g holds at position i if and only if for some 0 ≤ k ≤ i, g holds at k
and f holds at all positions k < j ≤ i.

0
-

g

k

f · · ·
f S g
f

i

• (σ, i) |= f B g ⇐⇒ (σ, k) |= g for some k ≤ i and (σ, j) |= f for all j,
k < j ≤ i, or (σ, j) |= f for all j ≤ i

f B g holds at position i if and only if f S g or −2f holds at position i.

QPTL. Quantified Propositional Temporal Logic (QPTL) is PTL extended
with quantification over boolean variables:

– If f is a QPTL formula and x ∈ V , then ∀x : f and ∃x : f are QPTL formulae.

Let σ = s0s1 . . . and σ′ = s′0s
′
1 . . . be two sequences of states. We say that σ′

is a x-variant of σ if for every i ≥ 0, s′i differs from si at most in the valuation
of x, i.e., the symmetric set difference of s′i and si is either {x} or empty. The
semantics of QPTL is defined by extending that of PTL with additional semantic
definitions for the quantifiers:

– For the quantifiers,
• (σ, i) |= ∃x : f ⇐⇒ (σ′, i) |= f for some x-variant σ′ of σ
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• (σ, i) |= ∀x : f ⇐⇒ (σ′, i) |= f for all x-variant σ′ of σ

Let us examine the defining QPTL formula for “Even p” (p holds at all even
positions): ∃t : (t ∧ 2(t ↔ ¬©t) ∧ 2(t → p)). Any sequence σ that satisfies
this formula has a t-variant σ′ satisfying t ∧ 2(t ↔ ¬©t) ∧ 2(t → p). From
t∧2(t↔ ¬©t), we can infer that t holds at all even positions and does not hold
at all odd positions along σ′. The fact that t holds at all even positions and σ′

satisfies 2(t→ p) forces p to hold at all even positions. The variable t does not
hold at all odd positions so either p holds or does not hold at odd positions of
σ′. Because the two sequences σ and σ′ are t-variants to each other, p also holds
at all even positions in σ.
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