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Abstract. Büchi complementation has been studied for five decades
since the formalism was introduced in 1960. Known complementation
constructions can be classified into Ramsey-based, determinization-based,
rank-based, and slice-based approaches. For the performance of these
approaches, there have been several complexity analyses but very few
experimental results. What especially lacks is a comparative experiment
on all the four approaches to see how they perform in practice. In this
paper, we review the state of Büchi complementation, propose several op-
timization heuristics, and perform comparative experimentation on the
four approaches. The experimental results show that the determinization-
based Safra-Piterman construction outperforms the other three and our
heuristics substantially improve the Safra-Piterman construction and the
slice-based construction.

1 Introduction

Büchi automata are nondeterministic finite automata on infinite words that rec-
ognize ω-regular languages. It is known that Büchi automata are closed under
Boolean operations, namely union, intersection, and complementation. Com-
plementation was first studied by Büchi in 1960 for a decision procedure for
second-order logic [3]. Complementation of Büchi automata is significantly more
complicated than that of nondeterministic finite automata on finite words. Given
a nondeterministic finite automaton on finite words with n states, complemen-
tation yields an automaton with 2n states through the subset construction [21].
Indeed, for nondeterministic Büchi automata, the subset construction is insuf-
ficient for complementation. In fact, Michel showed in 1988 that blow-up of
Büchi complementation is at least n! (approximately (n/e)n or (0.36n)n), which
is much higher than 2n [18]. This lower bound was later sharpened by Yan to
(0.76n)n [34], which was matched by an upper bound by Schewe [23].

There are several applications of Büchi complementation in formal verifica-
tion, for example, verifying whether a system satisfies a property by checking if
the intersection of the system automaton and the complement of the property
automaton is empty [30], testing the correctness of an LTL translation algorithm
without a reference algorithm, etc. [9]. Although recently many works focus on
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universality and containment testing without going explicitly through comple-
mentation [5, 6, 4], it is still unavoidable in some cases [17].

Known complementation constructions can be classified into four approaches:
Ramsey-based approach [3, 25], determinization-based approach [22, 19, 2, 20],
rank-based approach [27, 16, 14], and slice-based approach [11, 33]. The first three
approaches were reviewed in [32]. Due to the high complexity of Büchi comple-
mentaton, optimization heuristics are critical to good performance [9, 7, 23, 12,
15]. Unlike the rich theoretical development, empirical studies of Büchi com-
plementation have been rather few [15, 9, 12, 29], as much recent emphasis has
shifted to universality and containment. A comprehensive empirical study would
allow us to evaluate the performance of these complementation approaches.

In this paper, we review the four complementation approaches and perform
comparative experimentation on the best construction in each approach. Al-
though the conventional wisdom is that the nondeterministic constructions are
better than the deterministic construction, due to better worse-case bounds,
the experimental results show that the deterministic construction is the best
for complementation in general. At the same time, the Ramsey-based approach,
which is competitive in universality and containment testing [1, 5, 6], performs
rather poorly in our complementation experiments. We also propose optimization
heuristics for the determinization-based construction, the rank-based construc-
tion, and the slice-based construction. The experiment shows that the optimiza-
tion heuristics substantially improve the three constructions. Overall, our work
confirms the importance of experimentation and heuristics in studying Büchi
complementation, as worst-case bounds are poor guides to actual performance.

This paper is organized as follows. Some preliminaries are given in Section 2.
In Section 3, we review the four complementation approaches. We discuss the
results of our comparative experimentation on the four approaches in Section 4.
Section 5 describes our optimization heuristics and Section 6 shows the im-
provement made by our heuristics. We conclude in Section 7. More results of the
experiments in Section 4 and Section 6 and further technical details regarding
some of the heuristics can be found in [28].

2 Preliminaries

A nondeterministic ω-automaton A is a tuple (Σ,Q, q0, δ,F), where Σ is the
finite alphabet, Q is the finite state set, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q

is the transition function, and F is the acceptance condition, to be described
subsequently. A is deterministic if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ.

Given an ω-automatonA = (Σ,Q, q0, δ,F) and an infinite word w = a0a1 · · · ∈
Σω, a run ρ of A on w is a sequence q0q1 · · · ∈ Qω satisfying ∀i : qi+1 ∈ δ(qi, ai).
A run is accepting if it satisfies the acceptance condition. A word is accepted if
there is an accepting run on it. The language of an ω-automaton A, denoted
by L(A), is the set of words accepted by A. An ω-automaton A is universal if
L(A) = Σω. A state is live if it occurs in an accepting run on some word, and is



dead otherwise. Dead states can be discovered using a nonemptiness algorithm,
cf. [31], and can be pruned off without affecting the language of the automaton.

Let ρ be a run and inf (ρ) be the set of states that occur infinitely often in ρ.
Various ω-automata can be defined by assigning different acceptance conditions:
Büchi condition where F ⊆ Q and ρ satisfies the condition iff inf (ρ) ∩ F 6= ∅;
Muller condition where F ⊆ 2Q and ρ satisfies the condition iff there exists
F ∈ F such that inf (ρ) = F ; Rabin condition where F ⊆ 2Q × 2Q and ρ
satisfies the condition iff there exists (E,F ) ∈ F such that inf (ρ) ∩ E = ∅ and
inf (ρ)∩F 6= ∅; Streett condition where F ⊆ 2Q×2Q and ρ satisfies the condition
iff for all (E,F ) ∈ F , inf (ρ)∩F 6= ∅ implies inf (ρ)∩E 6= ∅; parity condition where
F : Q→ {0, 1, . . . , 2r} and ρ satisfies the condition iff min{F(q) | q ∈ inf (ρ)} is
even. F(q) is called the parity of a state q.

We use a system of three-letter acronyms to denote these ω-automata. The
first letter indicates whether the automaton is nondeterministic or deterministic.
The second letter indicates whether the acceptance condition is Büchi, Muller,
Rabin, Streett, or parity. The third letter is always a “W” indicating the au-
tomaton accepts words. For example, NBW stands for a nondeterministic Büchi
automaton and DPW stands for a deterministic parity automaton.

Given an ω-automaton A and an infinite word w, the run tree of A on w
is a tree where the vertices of a (full) branch form a run of A on w and there
is a corresponding branch for every run of A on w. The split tree of A on w is
a binary tree that abstracts the run tree by grouping accepting successors and
nonaccepting successors of states in a vertex respectively into the left child and
the right child. The reduced split tree of A on w is a binary tree obtained from
the split tree of A on w by removing a state from a vertex if it also occurs in a
vertex to the left on the same level and removing a vertex if it contains no state.
An NBW accepts a word if there is a left-recurring branch in the reduced split
tree. A slice is a sequence of state sets representing all vertices on a same level
of a reduced split tree in an order from left to right.

3 Historical Review

Ramsey-based approach. The very first complementation construction intro-
duced by Büchi in 1960 involves a Ramsey-based combinatorial argument and
results in a 22O(n)

blow-up in the state size [3]. This construction was later im-
proved by Sistla, Vardi, and Wolper to reach a single-exponential complexity
2O(n2) [25]. In the improved construction, referred to as Ramsey in this paper,
the complement is obtained by composing certain automata among a set of Büchi
automata which form a partition of Σω, based on Ramsey’s Theorem. Various
optimization heuristics for the Ramsey-based approach are described in [1, 6],
but the focus in these works is on universality and containment. In spite of the
quadratic exponent of the Ramsey-based approach, it is shown in [1, 5, 6] to be
quite competitive for universality and containment.

Determinization-based approach. Safra’s 2O(n log n) construction is the first com-
plementation construction that matches the Ω(n!) lower bound [22]. Later on,



Muller and Schupp introduced a similar determinization construction which
records more information and yields larger complements in most cases, but can
be understood more easily [19, 2]. In [20], Piterman improved Safra’s construction
by using a more compact structure and using parity automata as the intermedi-
ate deterministic automata, which yields an upper bound of n2n. (See also [24].)
Piterman’s construction, referred to as Safra-Piterman in this paper, performs
complementation in stages: from NBW to DPW, from DPW to complement
DPW, and finally from complement DPW to complement NBW. The idea is the
use of (1) a compact Safra tree to capture the history of all runs on a word and
(2) marks to indicate whether a run passes an accepting state again or dies.

Since the determinization-based approach performs complementation in stages,
different optimization techniques can be applied separately to the different stages.
For instance, several optimization heuristics on Safra’s determinization and on
simplifying the intermediate DRW were proposed by Klein and Baier [15].

Rank-based approach. The rank-based approach, proposed by Kupferman and
Vardi, uses rank functions to measure the progress made by a node of a run tree
towards fair termination [16]. The basic idea of this approach may be traced back
to Klarlund’s construction with a more complex measure [14]. Both construc-
tions have complexity 2O(n log n). There were also several optimization techniques
proposed in [9, 7, 12]. A final improvement was proposed recently by Schewe [23]
to the construction in [7]. The later construction performs a subset construction
in the first phase. In the second phase, it continually guesses ranks from some
point and verifies the guesses. Schewe proposed doing this verification in a piece-
meal fashion. This yields a complement with O((0.76n)n) states, which matches
the known lower bound modulo an O(n2) factor. We refer to the construction
with Schewe’s improvement as Rank in this paper.

Unlike the determinization-based approach that collects information from
the history, the rank-based approach guesses ranks bounded by 2(n − |F|) and
results in many nondeterministic choices. This nondeterminism means that the
rank-based construction often creates more useless states because many guesses
may be verified later to be incorrect.

Slice-based approach. The slice-based construction was proposed by Kähler and
Wilke in 2008 [11]. The blow-up of the construction is 4(3n)n while its prelim-
inary version in [33], referred to as Slice here, has a (3n)n blow-up4. Unlike
the previous two approaches that analyze run trees, the slice-based approach
analyzes reduced split trees. The construction Slice uses slices as states of the
complement and performs a construction based on the evolution of reduced split
trees in the first phase. By decorating vertices in slices at some point, it guesses
whether a vertex belongs to an infinite branch of a reduced split tree or the
vertex has a finite number of descendants. In the second phase, it verifies the
guesses and enforces that accepting states will not occur infinitely often.

4 The construction in [11] has a higher complexity than its preliminary version because
it treats complementation and disambiguation in a uniform way.



The first phase of Slice in general creates more states than the first phase
of Rank because of an ordering of vertices in the reduced split trees. Similar to
Rank, Slice also introduces nondeterministic choices in guessing the decorations.
While Rank guesses ranks bounded by 2(n− |F|) and continually guesses ranks
in the second phase, Slice guesses only once the decorations from a fixed set of
size 3 at some point.

4 Comparison of Complementation Approaches

We choose four representative constructions, namely Ramsey, Safra-Piterman,
Rank, and Slice, that are considered the most efficient construction in each
approach. These constructions are implemented in the GOAL tool [29]. We ran-
domly generate 11,000 automata with an alphabet of size 2 and a state set of
size 15 from combinations of 11 transition densities and 10 acceptance densi-
ties. For each automaton A = (Σ,Q, q0, δ,F) with a given state size n, symbol
a ∈ Σ, transition density r, and acceptance density f , we make t ∈ δ(s, a) for
drne pairs of states (s, t) ∈ Q2 uniformly chosen at random and add dfne states
to F uniformly at random. Our parameters were chosen to generate a large set
of complementation problems, ranging from easy to hard. The experiment was
run in a cluster at Rice University (http://rcsg.rice.edu/sugar/int/). For each
complementation task, we allocate one 2.83 GHz CPU and 1 GB memory. The
timeout of a complementation task is 10 minutes.

Constructions Eff. Samples SR (Win) SL (Win) SL/SR T M

Ramsey - - - - 11,000 0

Safra-Piterman 3,826 65.01 (2,797.0) 22.63 (1,066.17) 0.35 5 0
Rank 310.52 (1,025.5) 33.81 (1,998.67) 0.11 5,303 0
Slice 887.43 (3.5) 54.58 (761.17) 0.06 3,131 3,213

Table 1. The results of comparing the four representative constructions

We only collect state-size information from effective samples, which are tasks
finished successfully by all constructions. Otherwise, a construction may be con-
sidered to be worse in producing more states because it is better in finishing
more tasks. The experimental results are listed in Table 1 where SR is the aver-
age number of reachable states created in an effective sample, SL is the average
number of live states created in an effective sample, T is the total number of
timed-out tasks, and M is the total number of tasks that run out-of-memory.
The Win column of SR (resp., SL) is the share of effective samples where one
construction produces smallest complements in terms of reachable states (resp.,
live states). Ramsey is not competitive at all in complementation and is sepa-
rated from the other three in Table 1 because it failed to finish any task, even
though it is competitive in universality and containment, as shown in [1, 5, 6].



The SR, SL, and T columns show that the Safra-Piterman is the best both in
average state size and in running time. The low SL/SR ratio shows that Rank and
Slice create more dead states that can be easily pruned off. The Win columns
show that although Rank generates more dead states, it produces more com-
plements that are the smallest after pruning dead states. Slice becomes much
closer to Safra-Piterman in the Win column of SL because more than one half
of the 3,826 effective samples are universal automata. Except Ramsey, Slice has
the most unfinished tasks and produces many more states than Safra-Piterman
and Rank. As we show later, we can improve the performance of Slice signifi-
cantly by employing various optimization heuristics.

5 Optimization Techniques

5.1 For Safra-Piterman

Safra-Piterman performs complementation via several intermediate stages: start-
ing with the given NBW, it computes first an equivalent DPW, then the comple-
ment DPW, and finally the complement NBW. We address (1) the simplification
of the complement DPW, which results in an NPW, and (2) the conversion from
an NPW to an equivalent NBW.

Simplifying DPW by simulation (+S). For the simplification of the complement
DPW, we borrow from the ideas of Somenzi and Bloem [26]. The direct and re-
verse simulation relations they introduced are useful in removing transitions and
possibly states of an NBW while retaining its language. We define the simulation
relations for an NPW in order to apply the same simplification technique. Given
an NPW (Σ,Q, q0, δ,F) and two states qi, qj ∈ Q, qj directly simulates qi iff (1)
for all q′i ∈ δ(qi, a), there is q′j ∈ δ(qj , a) such that q′j directly simulates q′i, and (2)
F(qi) = F(qj). Similarly, qj reversely simulates qi iff (1) for all q′i ∈ δ−1(qi, a),
there is q′j ∈ δ−1(qj , a) such that q′j reversely simulates q′i, (2) F(qi) = F(qj),
and (3) qi = q0 implies qj = q0. After simplification using simulation relations,
as in [26], a DPW may become nondeterministic. Therefore, the simplification
by simulation can only be applied to the complement DPW.

Merging equivalent states (+E). As for the conversion from an NPW to an NBW,
a typical way in the literature is to go via an NRW [13, 8]. We propose to go
from NPW directly to NBW. Similar to the conversion from an NRW to an
NBW in [13], we can nondeterministically guess the minimal even parity passed
infinitely often in a run starting from some state. Once a run is guessed to pass
a minimal even parity 2k infinitely often starting from a state s, every state t
after s should have a parity greater than or equal to 2k and t is designated as an
accepting state in the resulting NBW if it has parity 2k. Moreover, we can make
the resulting NBW smaller by merging states, with respect to an even parity 2k,
that have the same successors and have parities either all smaller than 2k, all
equal to 2k, or all greater than 2k. We can also start to guess the minimal even
parity 2k starting from a state which has that parity.



5.2 For Rank

Maximizing Büchi acceptance set (+A). As stated in Section 3, the ranks for
the rank-based approach are bounded by 2(n − |F|). The larger the F is, the
fewer the ranks are. Thus, we propose to maximize the acceptance set of the
input NBW without changing its language, states, or transition function. Given
an NBW A = (Σ,Q, q0, δ,F), we construct A′ = (Σ,Q, q0, δ,F ′) with a larger
acceptance set F ′ ⊇ F such that q ∈ F ′ iff every elementary cycle containing
q also contains at least one state in F . The elementary cycles can be detected
by a cycle finding algorithm [10]. Clearly the language of A′ is the same as the
language of A and we can take the complement of A′ instead of A.

This heuristic can also be applied to other complementation approaches as
it maximizes the acceptance set of the input NBW before complementation. We
will show the improvement made by this heuristic for Safra-Piterman, Rank,
and Slice later in Section 6.

5.3 For Slice

Slice constructs a complement with slices as states based on the evolution of a
reduced split tree in the first phase, guesses the decoration for every vertex in a
slice at some point, and verifies the guesses in the second phase. Intuitively, the
decoration 1 indicates that a vertex must be in an infinite branch of a reduced
split tree. The decoration 0 indicates that the descendants of a vertex must
die out eventually before the next checkpoint. The decoration ∗ has the same
meaning as 0 but the check is put on hold. In the second phase, Slice verifies
two conditions: (1) a vertex decorated by 1 must have a right child decorated by
1, and (2) the left child of a vertex decorated by 1 and the children of a vertex
decorated by 0 or ∗ must have a finite number of descendants.

Deterministic decoration (+D). The first heuristic uses 1 to label vertices that
may (rather than must) be in an infinite branch of a reduced split tree and
only verifies the second condition in the second phase. All vertices could be
decorated by 1 in the guesses. However, since the first evolution of the second
phase always labels a left (accepting) child by 0 and a right (nonaccepting) child
by 1, we actually decorate accepting vertices by 0 and nonaccepting vertices by
1 in the guesses. This heuristic will result in deterministic decoration. The only
nondeterminism comes from choosing when to start decorating.

Reducing transitions (+R). The second heuristic relies on the observation that if
a run ends up in the empty sequence, a special slice denoted by ⊥, the run will
stay in ⊥ forever and we never need to decorate the run because it can reach ⊥
without any decoration. Thus we do not allow transitions from decorated slices
other than ⊥ to ⊥ or from any slice to doomed slices; a slice is doomed if it is
not ⊥ and has no vertex labeled by 1, i.e., every run through a doomed slice is
expected to reach ⊥.



Merging adjacent vertices (+M). The third heuristic recursively merges adjacent
vertices decorated all by 0 or all by ∗. The observation is that they are all guessed
to have a finite number of descendants and their successors will have the same
decoration, either 0 or ∗.

6 Experimental Results

The heuristics proposed in Section 5 are also implemented in the GOAL tool. We
use the same 11,000 automata as in Section 4 as the test bench. Since we do not
propose any optimization heuristic for Ramsey, it is omitted in this experiment.
The results showing the improvement made by the heuristics are listed in Table 2
where the Ratio columns are ratios with respect to the original construction and
the other columns have the same meaning as they have in Section 4.

Compared with the original version for each construction, the experimental
results in Table 2 show that (1) Safra-Piterman+ASE has 15 more unfinished
tasks but creates almost one half of reachable states and live states, (2) the
improvement made by +A is limited for Safra-Piterman and Slice but it is
substantial for Rank in finishing 1,376 more tasks and avoiding the creation
of around 2/3 dead states, (3) the heuristic +D is quite useful in reducing the
reachable states down to 1/4 for Slice but makes more live states, and (4)
Slice+ADRM finishes 6,116 more tasks and significantly reduces the reachable
states to 1/10 and live states to one half.

Constructions Eff. Samples SR (Ratio) SL (Ratio) SL/SR T M

Safra-Piterman 10,977 256.25 (1.00) 58.72 (1.00) 0.23 5 0
Safra-Piterman+A 228.40 (0.89) 54.33 (0.93) 0.24 5 0
Safra-Piterman+S 179.82 (0.70) 47.35 (0.81) 0.26 12 9
Safra-Piterman+E 194.95 (0.76) 45.47 (0.77) 0.23 11 0

Safra-Piterman+ASE 138.97 (0.54) 37.47 (0.64) 0.27 13 7

Rank 5,697 569.51 (1.00) 33.96 (1.00) 0.06 5,303 0
Rank+A 181.05 (0.32) 28.41 (0.84) 0.16 3,927 0

Slice 4,514 1,088.72 (1.00) 70.67 (1.00) 0.06 3,131 3,213
Slice+A 684.07 (0.63) 64.94 (0.92) 0.09 2,611 2,402
Slice+D 276.11 (0.25) 117.32 (1.66) 0.42 1,119 0
Slice+R 1,028.42 (0.94) 49.58 (0.70) 0.05 3,081 3,250
Slice+M 978.01 (0.90) 57.85 (0.82) 0.06 2,813 3,360

Slice+ADRM 102.57 (0.09) 36.11 (0.51) 0.35 228 0
Table 2. The results of comparing each construction with its improved versions

We also compare the three constructions with all optimization heuristics in
Section 5 based on 7,045 effective samples and list the results on the top of
Table 3. The table shows that Safra-Piterman+ASE still outperforms the other
two in the average state size and in running time. Table 3 also shows the follow-
ing changes made by our heuristics in the comparison: (1) Safra-Piterman+ASE



Constructions Eff. Samples SR (Win) SL (Win) SL/SR T M

Safra-Piterman+ASE 7,045 49.94 (6,928.67) 21.38 (3,411.5) 0.43 13 7
Rank+A 428.61 (35.67) 41.80 (1,916.5) 0.10 3,927 0

Slice+ADRM 316.70 (80.67) 62.46 (1,717.0) 0.20 228 0

Safra-Piterman+PASE 7,593 44.84 (5,748.33) 19.50 (3,224) 0.43 4 0
Rank+PA 309.68 (910.33) 35.39 (2,340) 0.11 3,383 0

Slice+PADRM 270.68 (934.33) 53.67 (2,029) 0.20 216 0
Table 3. The results of comparing the three improved complementation constructions

outperforms Rank+A in the number of smallest complements after pruning dead
states, and (2) Slice+ADRM creates fewer reachable states than Rank+A in aver-
age, and finishes more tasks than Rank+A. As the heuristic of preminimization
applied to the input automata, denoted by +P, is considered to help the non-
deterministic constructions more than the deterministic construction, we also
compare the three constructions with preminimization and list the results in
the bottom of Table 3. We only apply the preminimization implemented in the
GOAL tool, namely the simplification by simulation in [26]. According to our
experimental results, the preminimization does improve Rank and Slice more
than Safra-Piterman in the complementation but does not close the gap too
much between them in the comparison, though there are other preminimization
techniques that we didn’t implement and apply in the experiment.

7 Conclusion

We reviewed the state of Büchi complementation and examined the performance
of the four complementation approaches by an experiment with a test set of
11,000 automata. We also proposed various optimization heuristics for three of
the approaches and performed an experiment with the same test set to show the
improvement. The experimental results show that the Safra-Piterman construc-
tion performs better than the other three in most cases in terms of time and
state size. This is surprising and goes against the conventional wisdom that the
nondeterministic approaches are better. The Ramsey-based construction is not
competitive at all in complementation though it is competitive in universality
and containment. The results also show that our heuristics substantially improve
the Safra-Piterman construction and the slice-based construction in creating far
fewer states. The rank-based construction and especially the slice-based con-
struction can finish more complementation tasks with our heuristics. How the
constructions scale with a growing state size, alphabet size, transition density,
or other factors is not studied in this paper and is left as the future work.
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LNCS 6015, pages 205–220. Springer, 2010.

7. E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter.
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A The Conversion from NPW to NBW

Given an NPW P = (Σ,Q, q0, δ,F) where F : Q → {0, 1, . . . , 2r}, the naive
direct conversion from NPW to NBW constructs the equivalent NBW A =
(Σ,Q× {0, 2, . . . , r}, (q0, 0), ∆,G) where

– (qj , 2k) ∈ ∆((qi, 0), a) iff qj ∈ δ(qi, a) and 0 ≤ k ≤ r,
– (qj , 2k) ∈ ∆((qi, 2k), a) iff qj ∈ δ(qi, a), F(qj) ≥ 2k, and 0 ≤ k ≤ r, and
– G = {(q, 2k) | F(q) = 2k and 0 ≤ k ≤ r}.

Lemma 1. Given an NPW P , the naive conversion constructs an NBW A such
that L(P ) = L(A) [13].

We define an equivalence relation on states with respect to an even parity in
order to merge the states in the conversion. Let P = (Σ,Q, q0, δ,F) be an NPW.
Two states qi and qj are equivalent with respect to an even parity k, denoted
by qi ≡k qj , iff δ(qi, a) = δ(qj , a) for all a ∈ Σ, and either

– F(qi) = F(qj) = k,
– F(qi) > k and F(qj) > k, or
– F(qi) < k and F(qj) < k.

Let [qi]k = {qj | qi ≡k qj} be the equivalent class of a state qi for a parity k. Let
[Q] = {[q]2k | q ∈ Q and 0 ≤ k ≤ r} denote the set of all equivalent classes for
all states in Q and even parities.

Given an NPW P = (Σ,Q, q0, δ,F) where F : Q → {0, 1, . . . , 2r}, the im-
proved conversion constructs the equivalent NBW A = (Σ, [Q], [q0]0, ∆,G) where

– [qj ]2k ∈ ∆([qi]0, a) iff qj ∈ δ(qi, a) and either k = 0 or F(qj) = 2k ≤ 2r,
– [qj ]2k ∈ ∆([qi]2k, a) iff qj ∈ δ(qi, a), F(qj) ≥ 2k, and 0 ≤ k ≤ r, and
– G = {[q]2k | q ∈ Q,F(q) = 2k and 0 ≤ k ≤ r}.

Lemma 2. Given an NPW P , the improved conversion constructs an NBW A
such that L(P ) = L(A).

B The Slice-Based Constructions

B.1 Basic Notation

Let A = (Σ,Q, q0, δ,F) be an NBW and B be the set {0, ∗, 1}. An undecorated
slice over Q is a finite, pairwise disjoint, sequence Q0 · · ·Qn−1 of non-empty
subsets of Q. A decorated slice over Q is a finite sequence (Q0, b0) · · · (Qn−1, bn−1)
where Q0 · · ·Qn−1 form an undecorated slice and bi ∈ B for all i < n. The
empty sequence, denoted by ⊥, is a special slice considered both undecorated
and decorated. The set of undecorated slices and decorated slices over Q are
denoted by Qu and Qd respectively.

Let s = (Q0, b0) · · · (Qn−1, bn−1) ∈ Qd. Define s↓Q = Q0 · · ·Qn−1 to be the
undecorated version of s and s↓B = {b0, . . . , bn−1}. We say s is a reset slice iff
0 6∈ s↓B . In particular, ⊥ is a reset. We say s is doomed iff s 6= ⊥ and 1 6∈ s↓B .



B.2 The Slice Construction

Let A = (Σ,Q, q0, δ,F) be an NBW. We first define three transition functions
δu, δg, and δd, which specify how the slices evolve during the construction.

– The transition function δu : Qu×Σ → Qu represents the first phase of Slice
with δu(s, a) giving the next level of s in a reduced split tree with respect to
the symbol a. Let s = Q0 · · ·Qn−1 ∈ Qu and a ∈ Σ. Define s′ = Q′0 · · ·Q′2n−1

such that for i < n,
• Q′2i = (∪q∈Qiδ(q, a) ∩ F)−

⋃
j<2iQ

′
j , and

• Q′2i+1 = (∪q∈Qiδ(q, a)−F)−
⋃

j<2iQ
′
j .

By removing ∅ from s′, we can find j0 < · · · < jr−1 such that {j0, . . . , jr−1} =
{j < 2n | Q′j 6= ∅}. The result Qj0 · · ·Qjr−1 is called an a-successor of s,
denoted by δu(s, a).

– The transition function δg : Qu × Σ → 2Qd

is applied when Slice starts
to guess decorations at some point and transits from the first phase to the
second phase. In this transition, it labels vertices in an undecorated slice
nondeterministically by 0 or 1. Thus for s ∈ Qu, a ∈ Σ, and s′ ∈ Qd,
s′ ∈ δg(s, a) iff s′↓Q = δu(s, a) and s′↓B ⊆ {0, 1}.

– The transition function δd : Qd × Σ → Qd represents the second phase
of Slice where it verifies the guesses by evolving decorated slices in the
following way. Let s = (Q0, b0) · · · (Qn−1, bn−1) ∈ Qd, a ∈ Σ, and s′ =
(Q′j0 , b

′
j0

) · · · (Q′jr−1, b
′
jr−1) ∈ Qd where j’s and Q′j ’s are defined as in the

definition of δu, i.e., s′↓Q = δu(s↓Q, a). The decorated slice s′ is an a-successor
of s, denoted by δd(s, a), iff the following two conditions are satisfied:
[C1] for all i < n with bi = 1, Q′2i+1 6= ∅,
[C2] b′j ’s are decorated by the following rules:

[D1] If s is not a reset slice and bi = 1, then b′2i = ∗ and b′2i+1 = 1.
[D2] If s is not a reset slice and bi ∈ {0, ∗}, then b′2i = bi and b′2i+1 = bi.
[D3] If s is a reset slice and bi = 1, then b′2i = 0 and b′2i+1 = 1.
[D4] If s is a reset slice and bi = ∗, then b′2i = 0 and b′2i+1 = 0.

Given an NBW A = (Σ,Q, q0, δ,F), Slice constructs the complement A′ =
(Σ,S, s0, ∆,G) where

– S = Qu ∪Qd,
– s0 = {q0},
– ∆ = S ×Σ → 2S is the transition function described later, and
– G = {s ∈ Qd | s is a reset slice}.

For all s, s′ ∈ S and a ∈ Σ, s′ ∈ ∆(s, a) iff one of the following conditions is
satisfied:

– s, s′ ∈ Qu and s′ = δu(s, a),
– s ∈ Qu, s′ ∈ Qd, and s′ ∈ δg(s, a), or
– s, s′ ∈ Qd and s′ = δd(s, a).

Lemma 3. Given an NBW A, the construction Slice described above produces
an NBW A′ with L(A′) = L(A) [33].



B.3 The Improved Slice Construction

Let A = (Σ,Q, q0, δ,F) be an NBW. We define δ′g : Qu × Σ → Qd and δ′d :
Qd × Σ → Qd, which refine δg and δd based on the heuristic of deterministic
decoration in Section 5.3.

– Let s = Q0 · · ·Qn−1 ∈ Qu, a ∈ Σ, and s′ = (Q′j0 , b
′
j0

) · · · (Q′jr−1
, b′jr−1

) ∈ Qd

where j’s and Q′j ’s are defined as in Section B.2, i.e., s′↓Q = δu(s, a). Then
s′ = δ′g(s, a) iff for all i < n, b′2i = 0 and b′2i+1 = 1.

– The transition function δ′d is the same as δd in Section B.2 except that the
condition C1 of δd is not required to be satisfied.

Let s = (Q0, b0) · · · (Qn−1, bn−1) ∈ Qd. Based on the heuristic of merging ad-
jacent vertices in Section 5.3, we can recursively merge adjacent vertices (Qi, bi)
and (Qi+1, bi+1) in s when bi = bi+1 = 0 or bi = bi+1 = ∗. We call the result a
merged slice of s.

Given an NBW A = (Σ,Q, q0, δ,F) , the improved Slice with all optimiza-
tion heuristics in Section 5.3 constructs the complement A′ = (Σ,S, s0, ∆,G)
where

– S = Qu ∪Qd,
– s0 = {q0},
– ∆ = S ×Σ → 2S is the transition function described later, and
– G = {s ∈ Qd | s is a reset slice}.

For all s, s′ ∈ S and a ∈ Σ, s′ ∈ ∆(s, a) iff one of the following conditions is
satisfied:

– s, s′ ∈ Qu and s′ = δu(s, a).
– s ∈ Qu, s′ ∈ Qd, s′ is not doomed, and s′ is the merged slice of some
s′′ = δ′g(s, a)

– s, s′ ∈ Qd, s′ is not a ⊥ or doomed, and s′ is the merged slice of some
s′′ = δ′d(s, a).

Lemma 4. Given an NBW A, the improved Slice described above produces an
NBW A′ with L(A′) = L(A).

C Supplementary Experimental Results

Besides the experiments based on 11,000 automata of state size 15 in Section 4
and Section 6, we also performed an experiment based on another 11,000 au-
tomata of state size 20 to compare the Safra-Piterman construction, the rank-
based construction, and the slice-based construction, with all suitable optimiza-
tion heuristics applied. The 11,000 automata of state size 20 are also generated
from 11 transition densities and 10 acceptance densities as described in Sec-
tion 4. The experiment was run in the same environment as in Section 4 and
Section 6 except that 2 GB memory is allocated for a complementation task and
the timeout is 20 minutes.



The experimental results shown in Table 4 basically confirm the findings in
Section 6 from Table 3 except that Slice+PADRM creates more reachable states
than Rank+PA and the gap between Slice+PADRM and Rank+PA becomes larger.
It would be interesting to know how these constructions scale with a growing
state size, but we do not study the scalability in this paper and leave it as the
future work.

Constructions Eff. Samples SR (Win) SL (Win) SL/SR T M

Safra-Piterman+PASE 6,534 62.88 (5,084.0) 32.56 (2,995.17) 0.52 50 70
Rank+PA 397.70 (711.5) 55.21 (1,881.17) 0.14 4,366 0

Slice+PADRM 465.95 (738.5) 114.42 (1,657.67) 0.25 933 0
Table 4. The results of comparing Safra-Piterman+PASE, Rank+PA, and Slice+PADRM

based on 11,000 automata of state size 20

In addition to the average state size, we also compute the median and stan-
dard deviation of state sizes in the comparison of the Safra-Piterman construc-
tion, the rank-based construction, and the slice-based construction. Since the
complements of universal automata are always the same one-state automaton
after pruning off dead states, to avoid bias, the median and the standard devia-
tion are computed only from effective samples that are not universal automata.
The results are listed in Table 5 where Med is the median and Std is the stan-
dard deviation. Table 5 confirms again that the Safra-Piterman construction
outperforms the rank-based construction and the slice-based construction as it
not only has the smallest average state size but also has the smallest median
and standard deviation.
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