GOAL Extended: Towards a Research Tool for
Omega Automata and Temporal Logic*

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan, and
Chi-Jian Luo

Department of Information Management, National Taiwan University, Taiwan

Abstract. This paper reports extensions to the GOAL tool that enable
it to become a research tool for omega automata and temporal logic. The
extensions include an expanded collection of translation, simplification,
and complementation algorithms, a command-line mode which makes
GOAL functions accessible by programs, and utility functions for such
common tasks as file format conversion, random formulae generation,
and statistics collection.

1 Introduction

GOAL (http://goal.im.ntu.edu.tw) is a graphical interactive tool for defin-
ing and manipulating w-automata, in particular Biichi automata, and temporal
logic formulae. It was first formally introduced in [20]. Two most useful and dis-
tinctive functions of GOAL are (1) translation of quantified propositional linear
temporal logic (QPTL) formulae into equivalent Biichi automata and (2) equiv-
alence test between two Biichi automata or between a Biichi automaton and a
QPTL formula. With these and other utility functions, the GOAL tool may be
used for educational purposes and for supplementing automata-theoretic model
checkers such as SPIN [8]. For example, the user may use GOAL to prepare a
Biichi automaton diagram that is checked to be correct in that it is equivalent to
another larger reference Biichi automaton or some easier-to-understand QPTL
formula.

In this paper, we report extensions to GOAL that enable it to become a
research tool for w-automata and temporal logic. We have at present focused
on Biichi automata and PTL (which subsumes LTL). The extensions and their
usage for supporting research are described in the next section. Table 1 sum-
marizes the major algorithms implemented in GOAL. Though the number of
supported functions does not actually increase, a larger collection of algorithms
are very useful for various research purposes. In addition, several utility func-
tions have been implemented for common tasks in experimentation such as (1)
collecting statistic data and (2) generating random automata and temporal for-
mulae. These functions allow researchers to test correctness of their translation

* This work was partially supported by the iCAST project sponsored by the National
Science Council, Taiwan, under the Grant No. NSC96-3114-P-001-002-Y.

algorithm, collect comparison data, and, with GOAL’s graphical interface, vi-
sually observe and manipulate automata generated from their algorithm. The
extensions also enhance the original roles of GOAL as a learning/teaching tool
and as a supplementary model-checking tool.

Translation Complementation

Tableau®, Inc. Tableau [9], Temp. Tester [10],|Safra*, WAPA [18], WAA [11], Piterman [13]
GPVW [5], GPVW+ [5], LTL2AUT [1], Simplification

LTL2AUT+ [19], LTL2BA [3], PLTL2BA [4] [Simulation*, Pruning fair sets [15]

Table 1. Major algorithms in GOAL. An * indicates that the algorithm had already
been implemented in earlier versions of GOAL [20].

2 The Extensions for Supporting Research

In this section, we detail the extensions to GOAL and explain how they may be
used for supporting research.

— Translation Algorithms: In addition to the Tableau algorithm [12], we
have now implemented eight translation algorithms. Four (Tableau, Incre-
mental Tableau, Temporal Tester, and PLTL2BA) of the nine algorithms
originally support past operators. We have extended three more (GPVW,
LTL2AUT, and LTL2AUT+) to allow past operators. All these nine algo-
rithms are further extended to support quantification on propositions.

As an illustration of usage, Table 3 summarizes the results of translating the
following two equivalent formulae into generalized Biichi automata by seven
algorithms:

L —(0op— (~pU(@A—pAO(—p UT))))

2. -0(p — (&(r A ©99)))
Each formula is the negation of a formula stating that p must be triggered
by q and r with ¢ occurring strictly before r. The first formula with only
future operators is taken from the Spec Patterns respository [16].

— Complementation and Simplification Algorithms: In addition to Safra’s
construction, GOAL now has another three complementation algorithms, in-
cluding complementation via weak alternating parity automata (WAPA) [18],
complementation via weak alternating automata (WAA) [11], and Piter-
man’s construction [13]. Cross-checking greatly increases our confidence in
the correctness of the different complementation algorithms, which are diffi-
cult, and hence the correctness of the language containment and equivalence
tests. GOAL applies simplification algorithms to the input automata before
an equivalence test, and this substantially enhances the performance. Besides
the simulation-based method in [15], we have also implemented simplification
heuristics based on pruning fair sets in the same work.

Extended Extended | Extended
No.|| Tableau GPVW GPVW+ LTL2AUT | LTL2AUT+ LTL2BA PLTL2BA

st[tran[acc st[tran[acc st[tran[acc st[tran[acc st[tran[acc st[tran[acc st[tran[acc

1. ||65|550 | 3 ||72|456| 1 |49]288| 1 |22 84 | 1 |21|105| 1 ||8] 30 | 1 |33]118]| 1
2.0149|396| 1 |13/ 55 | 1 |-| - | - 9|23 |1 8|17 |1 ||-| - |- |15/38]|1
1. |[14] 68 | 3 ||14| 58 | 1 13| 52 | 1 13| 46 | 1 |8| 27 | 1 ||8| 30 | 1 (14| 41 |1
2010026 | 1|72t |1 |-| - |-|5/10|1|5/10]|1|-| -]-/10023]1

Table 3. Comparison of seven translation algorithms without and with simplification.
The column acc indicates the number of acceptance sets.

— The Command-Line Mode: This mode makes most of the GOAL func-
tions accessible by programs or shell scripts. It therefore provides an interface
between GOAL and external tools. Sample shell scripts that compare trans-
lation algorithms and output the results as text files are provided. They can
be easily adapted to handle other different tasks.

— Utility Functions: Utility functions are available for collecting statistic
data (numbers of states, transitions, and acceptance sets) and for generating
random automata and random temporal formulae. Outputs from external
automata tools MoDeLLa [14] and LTL2Buchi [6] may also be converted to
the GOAL File Format (GFF, which is an XML file format designed to cover
all w-automata) for further processing by GOAL.

We now describe a typical use case for the above functions, namely checking
correctness of a translation algorithm. This task can be performed with
high confidence by comparing the results of the algorithm under test with (1)
those of a large number of different translation algorithms, (2) those of a reference
algorithm, or (3) a set of reference answers, consisting of pairs of formulae and
their equivalent Biichi automata.

We assume a reference algorithm. To carry out the correctness checking pro-
cess, generate an adequate number of random temporal formulae and then apply
the following procedure repeatedly for each formula f:

1. Use the reference algorithm to generate two automata Ay and A-; that are
equivalent to f and —f respectively.

2. Use the algorithm under test to translate f into an automaton B.

3. Test if both A_y N B and Ay N B are empty.

If all the emptiness tests succeed, then the algorithm should be correct. Oth-
erwise, GOAL will produce counterexamples which can be run interactively on
the automata to “see” what the problem might be. We developed our transla-
tion algorithms in this manner. GOAL helped us to find some subtle bugs and
possible room for improvement.

3 Performance Evaluation and An Example Experiment

We present an experiment that, on the one hand, evaluates the performance
of GOAL and, on the other, demonstrates experimental comparative studies
that may be conducted with GOAL. The experiment was run on an Intel Xeon
3.2GHz machine with 2GB of memory allocated to the Java Virtual Machine.

States|Transitions Time Timeout
-f to BA 1629 6906 51.0s 0
Safra 2461 11721 175.7s 6
Simplification+Safra 2077 9707 22.1s + 114.8s 5
WAPA 89196| 4902278 6346.3s 51
Simplification+ WAPA | 8828 | 425248 |14.0s + 202.9s| 27
WAA 2920 27870 3629.4s 51
Simplification+WAA 1886 17740 |14.1s + 167.3s| 27
Piterman 1816 8314 224.5s 5
Simplification+Piterman| 1531 6916 23.4s +442.4s 3

Table 4. Comparison of complementation algorithms without and with simplification.
Only successful runs are accounted in the accumulated States, Transitions, and Time.

In the experiment, we compared the four complementation algorithms imple-
mented in GOAL without and with simplification. Note that the performance of
a complementation algorithm dictates the performance of the equivalence test
function it supports. We generated 300 random PTL formulae with a length
of 5 and translated them into Biichi automata as inputs using the LTL2AUT
algorithm. None of the 300 formulae are valid or unsatisfiable. The average size
of the input automata is about 5.4. We set a timeout of 10 minutes. From
this experiment, we found that (1) Safra’s and Piterman’s algorithms perform
much better than complementation via WAPA and complementation via WAA
and (2) simplification can significantly speed up the complementation task, es-
pecially complementation via WAPA and complementation via WAA.

4 Remarks

The extension of GOAL will continue to include a few more complementation
algorithms, for example [2]. Another effort will be to include even more trans-
lation algorithms, in particular those that utilize intermediary automata with
acceptance conditions on transitions such as [17] and those that do simplification
while constructing automata on-the-fly [7]. The fact that Safra’s and Piterman’s
algorithms in average work better than complementation via WAPA and com-
plementation via WAA is also worthy of further investigation.

Acknowledgment. We thank Susan H. Rodger at Duke University for granting
us the permission to use and modify the JFLAP source code.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for
linear temporal logic. In CAV 1999, LNCS 1633, pages 249-260. Springer, 1999.
E. Friedgut, O. Kupferman, and M. Y. Vardi. Biichi complementation made tighter.
In ATVA 2004, LNCS 8299, pages 64—78. Springer, 2004.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translations. In CAV
2001, LNCS 2102, pages 53—65. Springer, 2001.

P. Gastin and D. Oddoux. LTL with past and two-way very-weak alternating
automata. In MFCS 2003, LNCS 2747, pages 439-448. Springer, 2003.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV 1995, pages 3—18. Chapman & Hall,
1995.

D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation
of LTL formulae to Biichi automata. In FORTFE 2002, LNCS 2529, pages 308-326.
Springer, 2002.

M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly LTL model checking. In
TACAS 2005, LNCS 3440, pages 191-205. Springer, 2005.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

. Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full

propositional temporal logic. In CAV 1993, LNCS 697, pages 97-109. Springer,
1993.

Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. In In-
formation and Computation, volume 163, pages 203—-243, 2000.

O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408-429, 2001.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safty.
Springer, 1995.

N. Piterman. From nondeterministic Biichi and Streett automata to deterministic
parity automata. In LICS 2006, pages 255-264. IEEE Computer Society, 2006.
R. Sebastiani and S. Tonetta. More deterministic vs. smaller Biichi automata for
efficient LTL model checking. In CHARME 2003, LNCS 2860, pages 126—-140.
Springer, 2003.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In CAV
2000, LNCS 1855, pages 248—263. Springer, 2000.

The Spec Patterns repository. http://patterns.projects.cis.ksu.edu/.

H. Tauriainen. Automata and Linear Temporal Logic: Translations with Transition-
based Acceptance. PhD thesis, Helsinki University of Technology, 2006.

W. Thomas. Complementation of Biichi automata revisited. Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa, 1998.
M.-H. Tsai, W.-C. Chan, Y.-K. Tsay, and C.-J. Luo. Full PTL to Biichi automata
translation for on-the-fly model checking. Manuscript, 2007.

Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. GOAL: A
graphical tool for manipulating Biichi automata and temporal formulae. In TACAS
2007, LNCS 4424, pages 466—-471. Springer, 2007.

