
GOAL: A Graphical Tool for Manipulating Büchi Automata and
Temporal Formulae?

Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu, and Wen-Chin Chan

Department of Information Management, National Taiwan University, Taiwan

1 Introduction

In this paper, we present a tool named GOAL (an acronym derived from “Graphical Tool for Omega-
Automata and Logics”) whose main functions include (1) drawing and testing Büchi automata, (2) checking
the language equivalence between two Büchi automata, (3) translating quantified propositional linear tem-
poral logic (QPTL) formulae into equivalent Büchi automata, and (4) exporting Büchi automata as Promela
code. The GOAL tool, available at http://goal.im.ntu.edu.tw, can be used for educational purposes,
helping the user get a better understanding of how Büchi automata work and how they are related to linear
temporal logics. It may also be used, as we shall explain below, to construct correct and smaller specification
automata, supplementing model checkers that adopt the automata-theoretic approach, such as SPIN [5].

The automata-theoretic approach [11, 1] to linear temporal logic model checking works as follows. Suppose
A is the Büchi automaton modeling the system and B the Büchi automaton specifying a desired property.
The problem of model checking translates into that of testing language containment L(A) ⊆ L(B), which is
equivalent to L(A)∩L(B) = ∅. As Büchi automata are closed under complementation and intersection, this
reduces to testing if L(A×B) = ∅, namely the emptiness problem of Büchi automata. Because of the difficulty
and high complexity in complementing a Büchi automaton, in practice, an automata-theoretic model checker
typically assumes that the specification is given as a propositional linear temporal logic (PTL) formula. The
model checker first negates a specification formula ϕ and then translates it into an automaton B¬ϕ that
represents all behaviors disallowed by ϕ, i.e., L(B¬ϕ) = L(Bϕ) (where Bϕ is a Büchi automaton equivalent
to formula ϕ). Checking if L(A)∩L(Bϕ) = L(A×Bϕ) = ∅ is therefore the same as checking if L(A×B¬ϕ) = ∅,
where one only needs to construct the intersection (product) of A and B¬ϕ, and complementation is avoided.

Assuming that the specification is given as a PTL formula has two disadvantages. First, it limits the type
of properties that can be specified and checked. An ideal automata-theoretic model checker would support
some extension of PTL such as QPTL that is expressively equivalent to Büchi automata. The SPIN model
checker offers the user instead the possibility of directly defining B¬ϕ in Promela. However, it provides no
assist for the user to check the “correctness” of the defined automaton, i.e., if the automaton describes
what is intended. Büchi automata are in general harder to get right than temporal formulae. Second, the
machine-translated automaton B¬ϕ may be larger than an optimal and equivalent one. Many algorithms exist
for translating a PTL formula into an equivalent Büchi automaton, e.g., [3, 4], but none of them guarantee
optimality. As the emptiness checking of A × B¬ϕ requires time proportional to the size of the system
automaton A and to that of the specification automaton B¬ϕ, a larger B¬ϕ would mean a longer verification
time. To reduce verification time, it may be worthwhile to construct a smaller B¬ϕ manually. But again, a
way for checking the correctness of a user-defined B¬ϕ is needed.

This is one typical situation where the GOAL tool can be useful. First of all, GOAL is graphical, making
a user-defined automaton easier for human inspection. More importantly, the correctness of a user-defined
specification automaton can be checked against an easier-to-understand QPTL formula, by translating the
specification formula into an equivalent automaton and testing the equivalence between the user-defined
and the machine-translated automata. QPTL is expressively equivalent to Büchi automata [9]. GOAL also
supports past temporal operators which make some specifications easier to write. In addition, GOAL provides

? This work was supported in part by the National Science Council of Taiwan (R.O.C.) under grants NSC95-2221-
E-002-127 and NSC95-3114-P-001-001-Y02 (iCAST).



a repository that contains common patterns of temporal formulae and their corresponding optimized and
machine-checked Büchi automata. Once the specification automaton of an ideal size has been successfully
constructed and checked, it can be exported as Promela code which can then be fed into the SPIN model
checker.

GOAL was originally designed for learning/teaching Büchi automata and linear temporal logics. Despite
the possibility of mechanical translation, a temporal formula and its equivalent Büchi automaton are two
very different artifacts and their correspondence is not easy to grasp. Temporal formulae describe temporal
dependency without explicit references to time points and are in general more abstract and easier to under-
stand, while Büchi automata “localize” temporal dependency to relations between states and tend to be of
lower level and harder to understand. Nonetheless, Büchi automata and their relation with linear temporal
logics can be better understood by going through some translation algorithm with different input temporal
formulae or simply by examining more examples of temporal formulae and their equivalent Büchi automata.
This learning process, unfortunately, is tedious and prone to mistakes for the students, while preparing the
material is very time-consuming for the instructor. Tool support is needed.

An earlier version of GOAL has been introduced and suggested for educational purposes in [10]. How-
ever, its inability in handling quantified temporal formulae limited the kind of Büchi automata that could be
explored. It also lacked the exporting function that allows its use in combination with an automata-theoretic
model checker. To the best of our knowledge, GOAL is the first graphical interactive tool for manipulat-
ing Büchi automata and temporal formulae that supports past temporal operators and quantification over
propositions. There are other tools that provide translation of temporal formulae into Büchi automata, e.g.,
LTL2BA [3]. However, none of them provide facilities for visually manipulating automata and the temporal
logics they support are less expressive. The operations and tests on Büchi automata provided by GOAL are
also more comprehensive than those by other tools.

2 Main Functions

Below is a brief description of the main functions of GOAL, followed by some implementation highlights.

– Drawing and Testing Büchi Automata: The user can easily point-and-click and drag-and-drop to
create a Büchi automaton and test it. To get a feel of what kind of inputs the automaton accepts, the user
can run it through some input words. More interestingly, an automaton can be tested for emptiness and
two automata can be tested for language containment and equivalence, as well as simulation equivalence.

– Checking the Language Equivalence between Two Büchi Automata: This is a particularly
useful test function. The equivalence test between two Büchi automata is built on top of the language
containment test which in turns relies on the intersection and complementation operations and the
emptiness test. If two automata are not equivalent, an infinite word which is contained in the difference
of the two automata will be displayed as a counter example.

– Translating QPTL Formulae into Equivalent Büchi Automata: The user can type in a QPTL
formula and ask GOAL to translate it into an equivalent Büchi automaton, as shown in Figure 1(a).
Currently, GOAL imposes a restriction that a quantifier must not fall in the scope of a temporal operator.
This restriction does not sacrifice expressiveness, as QPTL with the restriction is as expressive as the
original unrestricted QPTL, which is expressively equivalent to Büchi automata [9]. Machine-translated
Büchi automata are usually not optimal in terms of size, yet they are useful for verifying the correctness
of user-defined automata (by the equivalence test). GOAL also supports past temporal operators which
make some specifications easier to write, helping the user convey his intuition without much hacking.

– The Automata Repository: This repository contains a collection of frequently used QPTL formulae
and their corresponding equivalent Büchi automata, which have been optimized by hand and checked by
GOAL; see Figure 1(b) for an example.

– Exporting Büchi Automata as Promela Code: Once an automaton has been defined and tested,
the user can export it in the Promela syntax on the screen or as a file, as shown in Figure 1(b). This
makes it possible to use GOAL as a graphical specification definition frontend to an automata-theoretic
model checker like SPIN.

2



(a) Automaton translated from the QPTL formula (b) An optimized version and its Promela code

Fig. 1. Two equivalent Büchi automata that describe the property “p is true at every even position”, which can also
be expressed as a QPTL formula.

GOAL is implemented in Java for the ease of installation. Its automata and graph modules were adapted
from those of JFLAP [7], a tool for classic theory of computation. The most complicated algorithms in
GOAL are those for translating temporal formulae into automata and for complementing automata. Our
translation algorithm combines an adaptation of the tableau construction described in Manna and Pnueli’s
book [6] and the approach described in [9] for handling quantification. For automata complementation, we
adopted the algorithm by Safra [8]. From inputs of a moderate size, these algorithms may produce very
large automata, which are difficult to display and usually impossible to understand intuitively. However, this
is not a serious problem, as on the one hand we intend GOAL to be used for educational purposes or for
specification definition, where the input temporal formulae or automata tend to be small. On the other hand,
the machine-generated automata are often used for equivalence tests, not for human inspection. Nonetheless,
we did implement several methods for state reduction, for example, removing redundant states detected
by simulation [2]. We have planned to include implementations of other translation and complementation
algorithms, which would be useful for comparative studies.

3 Use Cases

We describe a number of use cases that illustrate how the GOAL functions may be combined and used
in particular as a tool for learning/teaching Büchi automata and linear temporal logics or for specification
development:

– Checking correctness of a hand-drawn Büchi automaton: Understanding a Büchi automaton is
in general harder than understanding an equivalent temporal formula. Consequently, defining or drawing
a Büchi automaton that conveys one’s intention is also harder than writing a temporal formula for the
same purpose. Whether a hand-drawn automaton is correct, i.e., if it conveys the specifier’s intention,
can be verified using GOAL by following these steps: (1) Write a QPTL (or PTL if it suffices) formula
that specifies the same thing. (2) Translate the formula into an equivalent Büchi automaton. (3) Test
the equivalence between the machine-translated and the hand-drawn automata. If the equivalence test
is positive, then one can be assured that the hand-drawn Büchi automaton is indeed what is intended.

– Manual optimization of a specification Büchi automaton: In principle, a smaller specification au-
tomaton makes a model checker run faster. GOAL may be used to manually optimize a Büchi automaton
by repeatedly merging or removing its states or transitions and checking if the resulting automaton is
equivalent to a previous correct automaton. Though this is essentially a trial-and-error process, the
equivalence test provided by GOAL will greatly ease the pain.

3



– Understanding why PTL is strictly less expressive than Büchi automata. The property “p is
true at every even position” (an infinite word or sequence starts with position 0), or “Even p” for short,
is a typical example for showing that PTL is strictly less expressive than Büchi automata. A plausible
PTL formula for “Even p” would be “p ∧ 2(p → ©©p)”. Using GOAL, one can translate the formula
into a Büchi automaton and compare it with the one for “Even p” from the repository. An equivalence
test will show that the two automata are not equivalent and display a counter example. Indeed, the
formula p ∧ 2(p → ©©p) is overly restrictive. Once p holds at some odd position, this formula forces p
to hold at all subsequent odd positions, which is not required by “Even p”. The property can, however,
be expressed by a QPTL formula, e.g., ∃t : t ∧2(t ↔ ©¬t) ∧2(t → p).

– Combining GOAL with SPIN: In the SPIN model checker, the specification can either be given as a
PTL formula (without past operators) or directly as a Büchi automaton in Promela code. For a property
that is not expressible in PTL, defining a suitable Büchi automaton becomes necessary. In this case,
GOAL supplements SPIN by providing a convenient graphical interface for drawing and manipulating
Büchi automata. Once the (negative) specification automaton of an ideal size has been successfully
constructed and checked, it can be exported as Promela code. One can then copy-and-paste the Promela
code to SPIN’s model file as the “never claim” and continue the model checking procedure as usual.

4 Concluding Remarks

The GOAL tool will continue to be improved and extended. As the source of the acronym “GOAL” suggests,
our long-term goal is for the tool to handle the common variants of omega-automata and the logics that are
expressively equivalent to these automata. Currently, as by-products of Safra’s complementation construc-
tion, GOAL already inlcudes Büchi to Rabin and Streett to Büchi translations. Although these variants of
omega-automata do not necessarily have a direct impact on model-checking efficiency, they are powerful in-
termediaries for automata-based algorithms development. A tool that can visually manipulate these variants
and perform their translations will be helpful in such developments. It is also of educational value, which
should not be overlooked.

Acknowledgment. We thank Susan H. Rodger, the creator of JFLAP, at Duke University for granting us the
permission to use and modify the JFLAP source code.

References

1. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, 1999.
2. K. Etessami and G. Holzmann. Optimizing Büchi automata. In Proceedings of the 11th International Conference

on Concurrency Theory (CONCUR 2000), LNCS 1877, pages 153–167. Springer, 2000.
3. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proceedings of the 13th International

Conference on Computer-Aided Verification (CAV 2001), LNCS 2102, pages 53–65. Springer, 2001.
4. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear temporal logic.

In Protocol Specification, Testing, and Verification, pages 3–18. Chapman & Hall, 1995.
5. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.
6. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safty. Springer, 1995.
7. S. Rodger and T. Finley. JFLAP. http://www.jflap.org/.
8. S. Safra. On the complexity of ω-automta. In Proceedings of the 29th Annual IEEE Symposium on Foundations

of Computer Science (FOCS 1988), pages 319–327, 1988.
9. A.P. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi automata with applications to

temporal logic. Theoretical Computer Science, 49:217–237, 1987.
10. Y.-K. Tsay, Y.-F. Chen, and K.-N. Wu. Tool support for learning Büchi automata and linear temporal logic.

Presented at the Formal Methods in the Teaching Lab Workshop, Hamilton, Canada, August 2006.
11. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proceedings

of the 1st Annual IEEE Symposium on Logic in Computer Science (LICS 1986), pages 332–344, 1986.

4


