Tool Support for Learning Büchi Automata and Linear Temporal Logic

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

Joint work with Yu-Fang Chen & Kang-Nien Wu

Background

- **Büchi automata** and **linear temporal logic** are two fundamental components of model checking, in particular, the automata-theoretic approach:
 - The (finite-state) system is modeled as a Büchi automaton A.
 - A desired behavioral property of the system is given by a linear temporal formula f.
 - Let B_1 ($B_{\sim f}$) denote a Büchi automaton equivalent to f ($\sim f$).
 - The model checking problem is essentially asking whether $\mathcal{L}(A) \subseteq \mathcal{L}(B)$ or equivalently $\mathcal{L}(A) \cap \mathcal{L}(B_{\sim f}) = \emptyset$.

- The well-used model checker SPIN, for example, adopted the automata-theoretic approach.

Motivation

- Model checking has proven to be very useful and the number of courses covering related topics appears to be increasing.
- Understanding the correspondence between Büchi automata and linear temporal logic is not easy.
- A graphical interactive tool may be helpful for the learner (and the teacher).
- Tools exist for learning classic automata and formal languages, e.g., JFLAP (which inspired our tool GOAL and provided some of its basic building blocks).

Büchi Automata

- Büchi automata (BA) are a variant of omega-automata, which are finite automata operating on infinite words.
- A Büchi automaton is given, as in finite automata, by a 5-tuple $(\Sigma, Q, \delta, Q_0, F)$, where $F \subseteq Q$ is the set of accepting states.
- An infinite word $\alpha \in \Sigma^\omega$ is accepted by a Büchi automaton B if there exists a run ρ of B on α satisfying the condition: $\text{Inf}(\rho) \cap F \neq \emptyset$ where $\text{Inf}(\rho)$ denotes the set of states occurring infinitely many times in ρ.

Facilities

- IM NTU

- FMEd 2006
Generalized Büchi Automata

- A generalized Büchi automaton (GBA) is like a BA but with $F \subseteq 2^Q$, i.e., $F = \{F_1, \ldots, F_k\}$ where $F_i \subseteq Q$.

- A word $\alpha \in \Sigma^\omega$ is accepted by a generalized Büchi automaton B if there exists a run ρ of B on α satisfying the condition:

$$\forall F_i \in F: \text{Inf}(\rho) \cap F_i \neq \emptyset$$

About the Alphabet

- To link Büchi automata to temporal formulae, we will consider automata with an alphabet like:
 - $\{p, \neg p\}$
 - $\{pq, p \neg q, \neg pq, \neg p \neg q\}$

Propositional Linear Temporal Logic (PTL)

- A subset of linear temporal logic (LTL).

- PTL formulae are interpreted over an infinite sequence of states, which can be seen as an infinite word over a suitable alphabet like $\{p, \neg p\}$ or $\{pq, p \neg q, \neg pq, \neg p \neg q\}$.

- Every PTL formula is equivalent to some Büchi automaton, but not vice versa.

Note: Quantified PTL (QPTL) are as expressive as Büchi automata.

Temporal Operators in PTL

- Future temporal operators:
 - next: $()$ or X
 - eventually (sometime): $<>$ or F
 - hence-forth (always): $[]$ or G
 - wait-for (unless): \n
 - until: U

- Past temporal operators:
 - previous: $(-)$ or Y
 - before: $(-)$ or Z
 - once: $<->$ or 0
 - so-far: $[-]$ or H
 - back-to: B
 - since: S
Semantics of Future Operators

Let π be an infinite sequence of states.

- $(\pi, i) \vdash ()f$ iff $(\pi, i+1) \vdash f$
- $(\pi, i) \vdash <>f$ iff $(\pi, j) \vdash f$ for some $j \geq i$
- $(\pi, i) \vdash []f$ iff $(\pi, j) \vdash f$ for all $j \geq i$
- $(\pi, i) \vdash f U g$ iff $(\pi, k) \vdash g$ for some $k \geq i$
 and $(\pi, j) \vdash f$ for all $j, i \leq j < k$
- $(\pi, i) \vdash f W g$ iff $(\pi, i) \vdash []f$ or $(\pi, i) \vdash f U g$

Semantics of Past Operators

- $(\pi, i) \models (-)f$ iff $i \geq 1$ and $(\pi, i-1) \models f$
- $(\pi, i) \models (~)f$ iff $i = 0$ or $(\pi, i-1) \models f$
- $(\pi, i) \models <>f$ iff $(\pi, j) \models f$ for some $j, 0 \leq j \leq i$
- $(\pi, i) \models [-]f$ iff $(\pi, j) \models f$ for all $j, 0 \leq j \leq i$
- $(\pi, i) \models f S g$ iff $(\pi, k) \models g$ for some $k \leq i$
 and $(\pi, j) \models f$ for all $j, k < j \leq i$
- $(\pi, i) \models f B g$ iff $(\pi, i) \models [-]f$ or $(\pi, i) \models f S g$

Example 1: $<>[]p$

- Meaning: p always holds after some time
- Satisfying models:
 - $(p)^{\omega}$, i.e., $p p p p p ...$
 - $p \neg p \neg p \neg p \neg p (p)^{\omega}$
- Unsatisfying models:
 - $p \neg p \neg p \neg p (\neg p)^{\omega}$

$<>[]p$ as a Büchi Automaton

```
q0           q1
p_ p
F = \{q1\}
```
Example 2: \([p \rightarrow \langle\rangle q]\)

- Meaning: Every \(p\) is preceded by \(q\).
- Satisfying models:
 - \((\neg p \land \neg q)\)^\omega
 - \((\neg p \land \neg q)(\neg p \land q)(\neg p \land q)(p \land q)^\omega\)
- Unsatisfying models:
 - \((\neg p \land q)(p \land q)(p \land q)...\)

Example 3: \([p \rightarrow p \lor q]\)

- Meaning: Once \(p\) becomes true, it will remain true continuously until \(q\) becomes true, and \(q\) does become true.
- Satisfying models:
 - \((\neg p \land q)\)^\omega
 - \((\neg p \land q)(p \land q)(p \land q)(p \land q)(p \land q)(p \land q)(\neg p \land q)^\omega\)
- Unsatisfying models:
 - \((\neg p \land q)(p \land q)(p \land q)...\)
Example 4: “Even p”

- This is NOT a PTL formula!
- Meaning: p holds in very even state.
 (Note: the states of a sequence are numbered 0,1,2,3,…)
- Satisfying models:
 - \((p)\)
 - \((p\sim p)\)
 - \(p\sim pp\sim p(pp)\)
- Unsatisfying models:
 - \(p\sim ppp\sim p(pp)\)

“Even p” as a Büchi Automaton

\[F = \{q0,q1,q2\} \]

Main Features of GOAL

- Drawing and Running Büchi Automata
- PTL Formulae to BA Translation
- Boolean Operations on BA
 - Union
 - Intersection
 - Complement
- Tests on BA
 - Emptiness
 - Containment (language containment)
 - Equivalence (language equivalence)
- Repositories of pre-drawn BA.

Test Running a BA

- To get an intuitive understanding of what language is being defined by the BA.
- Input format
 - Input string: \(ppp\sim pp(\sim pp)\)
 - Real format: \((p)(p)(p)(\sim p)(p)(\sim p)(p)\)
 - Input string: \(\sim pq\) \(\sim pq\) \(\sim pq\) \(\sim pq\) \(\sim pq\)
 - Real format: \(\sim pq\) \(\sim pq\) \(\sim pq\) \(\sim pq\) \(\sim pq\)
Demo Script

- Check if it is correct, by comparing with a machine-translated one.
- Try to specify “Even p” in PTL.
- See why it fails.
- Perhaps more ...

The Future of GOAL

GOAL is constantly being improved; possible future extensions include:

- Integration with LTL model checkers
 - For example, export automata as Promela code for SPIN
- QPTL, PSL, S1S, etc. to Büchi automata (and vice versa)
- Minimization of Büchi automata
- Transformation to and from other variants of ω-automata
- Even better editing environment
 - Faster local updates in large graph layouts