Tool Support for Learning Büchi Automata and Linear Temporal Logic

Yih-Kuen Tsay
Dept. of Information Management National Taiwan University

Joint work with Yu-Fang Chen \& Kang-Nien Wu
> Büchi automata and linear temporal logic are two fundamental components of model checking, in particular, the automata-theoretic approach:

- The (finite-state) system is modeled as a Büchi automaton A.
- A desired behavioral property of the system is given by a linear temporal formula f.
- Let $B_{f}\left(B_{\sim f}\right)$ denote a Büchi automaton equivalent to $f(\sim f)$.
- The model checking problem is essentially asking whether
$L(A) \subseteq \angle\left(B_{i}\right)$ or equivalently $L(A) \cap L\left(B_{\sim}\right)=\emptyset$.
- The well-used model checker SPIN, for example, adopted the automata-theoretic approach.

Motivation

$>$ Model checking has proven to be very useful and the number of courses covering related topics appears to be increasing.
> Understanding the correspondence between Büchi automata and linear temporal logic is not easy.
$>$ A graphical interactive tool may be helpful for the learner (and the teacher).
$>$ Tools exist for learning c/assic automata and formal languages, e.g., JFLAP (which inspired our tool GOAL and provided some of its basic building blocks).

Büchi Automata

> Büchi automata (BA) are a variant of omegaautomata, which are finite automata operating on infinite words.

- A Büchi automaton is given, as in finite automata, by a 5 -tuple ($\Sigma_{,} Q, \delta, Q_{0}, F$), where $F \subseteq Q$ is the set of accepting states.
$>$ An infinite word $\alpha \in \Sigma^{\omega}$ is accepted by a Büchi automaton B if there exists a run ρ of B on α satisfying the condition: $\operatorname{Inf}(\rho) \cap F \neq \emptyset$ where $\operatorname{Inf}(\rho)$ denotes the set of states occurring infinitely many times in ρ.

Generalized Büchi Automata

- A generalized Büchi automaton (GBA) is like a BA but with $F \subseteq 2 Q$, i.e., $F=\left\{F_{1}, \ldots, F_{k}\right\}$ where F_{i} \subseteq Q.
$>$ A word $\alpha \in \Sigma^{\oplus}$ is accepted by a generalized Büchi automaton B if there exists a run ρ of B on α satisfying the condition:
$\forall F_{i} \in F: \operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$

About the Alphabet

$>$ To link Büchi automata to temporal formulae, we will consider automata with an alphabet like:

- \{p, ~p $\}$
- $\{p q, p \sim q, \sim p q, \sim p \sim q\}$

Semantics of Future Operators

Semantics of Past Operators

Let π be an infinite sequence of states.
$>(\pi, i) \vDash() f$ iff $(\pi, i+1) \vDash f$
$>(\pi, i) \models>f$ iff $(\pi, j) \models f$ for some $j \geq i$
$>(\pi, i) \vDash[] f$ iff $(\pi, j) \models f$ for all $j \geq i$
$>(\pi, i) \vDash f U g$ iff $(\pi, k) \vDash g$ for some $k \geq i$ and $(\pi, j) \models f$ for all $j, i \leq j<k$
$>(\pi, i) \vDash f W g$ iff $(\pi, i) \vDash[] f$ or $(\pi, i) \vDash f U g$
$>(\pi, i) \vDash(-) f$ iff $i \geq 1$ and $(\pi, i-1) \models f$
$>(\pi, i) \vDash(\sim)$ f iff $i=0$ or $(\pi, i-1) \vDash f$
$>(\pi, i) \vDash \leftrightarrow f$ iff $(\pi, j) \vDash f$ for some $j, 0 \leq j \leq i$
$>(\pi, i) \vDash[-] f$ iff $(\pi, j) \vDash f$ for all $j, 0 \leq j \leq i$
$>(\pi, \mathrm{i}) \vDash \mathrm{f} S \mathrm{~g}$ iff $(\pi, k) \vDash \mathrm{g}$ for some $\mathrm{k} \leq \mathrm{i}$, and $(\pi, j) \models f$ for all $j, k<j \leq i$
$>(\pi, \mathrm{i}) \vDash \mathrm{f} B \mathrm{~g}$ iff $(\pi, \mathrm{i}) \vDash[-] \mathrm{f}$ or $(\pi, \mathrm{i}) \vDash \mathrm{f} S \mathrm{~g}$

Example 1: <>[]p

<>[]p as a Büchi Automaton
$>$ Meaning: p always holds after some time
-Satisfying models:

- (p) ${ }^{\text {, }}$, i.e., ppp...
- p~p~pp~p(p)
>Unsatisfying models:
- p~p~pp(~pp) ${ }^{\infty}$

$F=\{q 1\}$

Example 2: [](p --> <->q)

[]$(p--><->q)$ as a Büchi Automaton
$>$ Meaning: Every p is preceded by q .
-Satisfying models:

- ($\sim p \sim q)^{\oplus}$
- ($\sim p \sim q)(\sim p q)(\sim p \sim q)(p \sim q)^{\omega}$
$>$ Unsatisfying models:
- $(\sim p \sim q)(p \sim q) \ldots$

$F=\{q 0, q 1\}$

Example 3: [](p --> p Uq)

[](p --> p Uq) as a Büchi Automaton

$F=\{q 0\}$

Example 4: "Even p"

"Even p" as a Büchi Automaton
$>$ This is NOT a PTL formula!
$>$ Meaning: p holds in very even state.
(Note: the states of a sequence are numbered $0,1,2,3, \ldots$)
$>$ Satisfying models:
(p) ${ }^{\circ}$

- $(p \sim p)^{-}$
- p~pp~p(pp) ${ }^{\oplus}$
$>$ Unsatisfying models:
- p~ppp~p(pp) ${ }^{\text {a }}$

$F=\{q 0, q 1, q 2\}$

Main Features of GOAL

> Drawing and Running Büchi Automata
> PTL Formulae to BA Translation
> Boolean Operations on BA

- Union
- Intersection

Complement
$>$ Tests on BA

- Emptiness
- Containment (language containment)
- Equivalence (language equivalence)
$>$ Repositories of pre-drawn BA.

Test Running a BA

$>$ To get an intuitive understanding of what language is being defined by the BA.
$>$ Input format
Input string: ppp $\sim p p(\sim p p)^{\omega}$
Real format: $(p)(p)(p)(\sim p)(p)\{(\sim p)(p)\}$

- Input string: ($\sim p q$) (($\sim p q$) ($\sim p \sim q)(\sim p \sim q))^{\oplus}$

Real format: $(\sim p q)\{(\sim p q)(\sim p \sim q)(\sim p \sim q)\}$

Demo Script

$>$ Draw a BA, intended for $<>$ []p.
$>$ Check if it is correct, by comparing with a machine-translated one.

- Try to specify "Even p" in PTL.
- See why it fails.
> Perhaps more ...

The Future of GOAL

GOAL is constantly being improved; possible future extensions include:
> Integration with LTL model checkers

- For example, export automata as Promela code for SPIN
$>$ QPTL, PSL, S1S, etc. to Büchi automata (and vice versa)
$>$ Minimization of Büchi automata
$>$ Transformation to and from other variants of ω^{-} automata
> Even better editing environment
- Faster local updates in large graph layouts

