Suggested Solutions to Midterm Problems

1. (20 points)
(a) Let $A=\{a, b, c, d, e, f\}$ and $R=\{(b, c),(d, e),(d, f)\}$, which is a binary relation on A.Give a symmetric and transitive but not reflexive binary relation on A that includes R. Please present the relation using a directed graph.
Solution.

(b) Suppose that R_{1} and R_{2} are equivalence relations on a set A. Is $R_{1} \cup R_{2}$ an equivalence relation on A ? Justify your answer.

Solution.

Consider $R_{1}=\{(a, a),(b, b),(c, c),(a, b),(b, a)\}$ and $R_{1}=\{(a, a),(b, b),(c, c),(b, c),(c, b)\}$, $R_{1} \cup R_{2}$ would be $\{(a, a),(b, b),(c, c),(a, b),(b, a),(b, c),(c, b)\}$. Since (a, b) and (b, c) do not imply $(a, c), R_{1} \cup R_{2}$ is not transitive. Therefore, when R_{1} and R_{2} are equivalence relations, $R_{1} \cup R_{2}$ is not necessarily an equivalence relation.
2. (30 points)
(a) Draw the state diagram of an NFA, with four states, that recognizes $\left\{w \in\{0,1\}^{*} \mid\right.$ w ends with 01 or 10$\}$.

Solution.

(b) Convert the NFA in (a) into an equivalent DFA (using the procedure discussed in class); do not attempt to optimize the number of states, though you may omit the unreachable states.

Solution.

(c) Convert the NFA in (a) into an equivalent regular expression (using the procedure discussed in class).
Solution.

\Rightarrow

\Rightarrow

equivalent regular expression: $(0 \cup 1)^{*}(01 \cup 10)$
3. (20 points) Let $L=\left\{a^{n} b^{n} \mid n \in N\right\}$.
(a) Prove or disprove L is regular.

Solution.
Suppose L is regular, we take s to be $a^{p} b^{p}$, where p is the pumping length. We divide s into $x y z$ such that $|y|>0$ and $|x y| \leq p$.
Since $|x y| \leq p, y$ falls in a^{p}. Consider $y=a^{k}, 0<k \leq p . x y^{2} z=a^{p+k} b^{p}$, which is $\notin L$. Since s does not belongs to L when we pump it. A contradiction occurs. Therefore, L is not regular.
(b) Prove or disprove L is context free.

Solution.
We construct a PDA that recognizes L to prove it is context-free:

Since L can be recognized by some PDAs, it is context-free.
4. (20 points) Consider the following CFG.

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \times F \mid F \\
& F \rightarrow(E) \mid a
\end{aligned}
$$

(a) Give the (leftmost) derivation and parse tree for the string $(a+a) \times(a \times a)$.

Solution.

The leftmost derivation:

$$
\begin{aligned}
E & \Rightarrow T \\
& \Rightarrow T \times F \\
& \Rightarrow F \times F \\
& \Rightarrow(E) \times F \\
& \Rightarrow(E+T) \times F \\
& \Rightarrow(T+T) \times F \\
& \Rightarrow(F+T) \times F \\
& \Rightarrow(a+T) \times F \\
& \Rightarrow(a+F) \times F \\
& \Rightarrow(a+a) \times(E) \\
& \Rightarrow(a+a) \times(T) \\
& \Rightarrow(a+a) \times(T \times F) \\
& \Rightarrow(a+a) \times(F \times F) \\
& \Rightarrow(a+a) \times(a \times F) \\
& \Rightarrow(a+a) \times(a \times a)
\end{aligned}
$$

(b) Convert the CFG in (a) into an equivalent PDA (using the procedure discussed in class).

Solution.

5. (10 points) Prove, using the pumping lemma, that $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context free.

Solution.

Suppose $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is context-free, we take s to be $a^{p} b^{p} c^{p}$, where p is the pumping length. There are three ways to divide s into uvxyz such that $|v y|>0$ and $|v x y| \leq p$:
Case1: vxy falls in a^{p}. When we pump up the string the number of a increases while the number of others remain. Since the numbers of each letter are unequal, the pumped string is not in $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.
Case2: vxy contains part of a^{p} and part of b^{p}. When we pump up the string the number of a and b increase while the number of c remains. Since the numbers of each letter are unequal, the pumped string is not in $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.
Case3: vxy falls in b^{p}. Similar to Caes1.
Case4: $v x y$ contains part of b^{p} and part of c^{p}. Similar to Case2.
Case5: vxy falls in c^{p}. Similar to Caes1.
No matter how we divide s, the string no longer belongs to $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ when we pump it. A contradiction occurs. Therefore, $\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context free.

