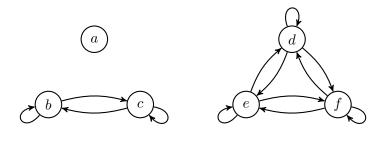
Suggested Solutions to Midterm Problems

- 1. (20 points)
 - (a) Let $A = \{a, b, c, d, e, f\}$ and $R = \{(b, c), (d, e), (d, f)\}$, which is a binary relation on A.Give a symmetric and transitive but *not* reflexive binary relation on A that includes R. Please present the relation using a directed graph. Solution.



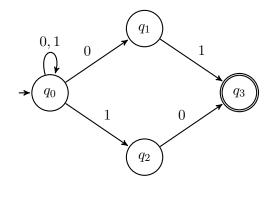
(b) Suppose that R_1 and R_2 are equivalence relations on a set A. Is $R_1 \cup R_2$ an equivalence relation on A? Justify your answer.

Solution.

Consider $R_1 = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$ and $R_1 = \{(a, a), (b, b), (c, c), (b, c), (c, b)\}$, $R_1 \cup R_2$ would be $\{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}$. Since (a, b) and (b, c)do not imply $(a, c), R_1 \cup R_2$ is not transitive. Therefore, when R_1 and R_2 are equivalence relations, $R_1 \cup R_2$ is not necessarily an equivalence relation.

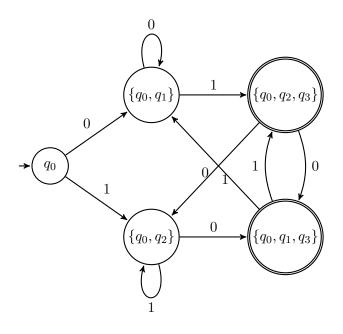
- 2. (30 points)
 - (a) Draw the state diagram of an NFA, with four states, that recognizes $\{w \in \{0,1\}^* \mid w \text{ ends with } 01 \text{ or } 10\}$.

Solution.



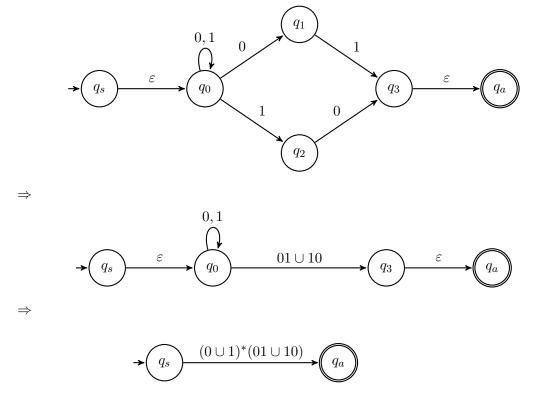
(b) Convert the NFA in (a) into an equivalent DFA (using the procedure discussed in class); do not attempt to optimize the number of states, though you may omit the unreachable states.

Solution.



- (c) Convert the NFA in (a) into an equivalent regular expression (using the procedure discussed in class).

Solution.



equivalent regular expression: $(0 \cup 1)^*(01 \cup 10)$

- 3. (20 points) Let $L = \{a^n b^n \mid n \in N\}.$
 - (a) Prove or disprove L is regular.

Solution.

Suppose L is regular, we take s to be $a^p b^p$, where p is the pumping length. We divide s into xyz such that |y| > 0 and $|xy| \le p$.

Since $|xy| \leq p$, y falls in a^p . Consider $y = a^k$, $0 < k \leq p$. $xy^2z = a^{p+k}b^p$, which is $\notin L$. Since s does not belongs to L when we pump it. A contradiction occurs. Therefore, L is not regular.

(b) Prove or disprove L is context free.

Solution.

We construct a PDA that recognizes L to prove it is context-free:

$$\begin{array}{c} a, \varepsilon \to 0 \\ \bullet \\ \hline q_0 \\ \hline \varepsilon, \varepsilon \to \$ \\ \hline q_1 \\ \hline \varepsilon, \varepsilon \to \varepsilon \\ \hline q_2 \\ \hline \varepsilon, \$ \to \varepsilon \\ \hline q_3 \\ \hline q_3 \\ \hline \end{array}$$

Since L can be recognized by some PDAs, it is context-free.

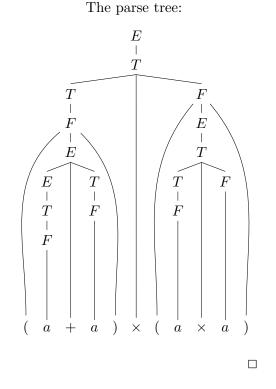
4. (20 points) Consider the following CFG.

$$\begin{array}{rrrr} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T \times F \mid F \\ F & \rightarrow & (E) \mid a \end{array}$$

(a) Give the (leftmost) derivation and parse tree for the string $(a + a) \times (a \times a)$. Solution.

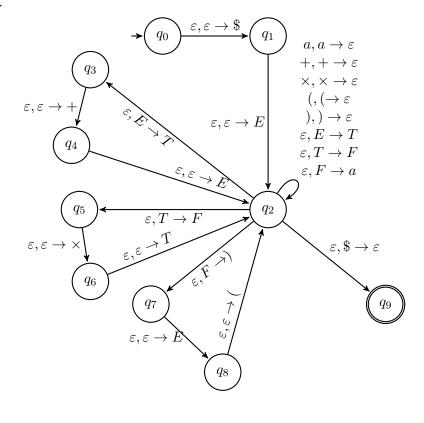
The leftmost derivation:

$$\begin{array}{rcl} E & \Rightarrow & T \\ \Rightarrow & T \times F \\ \Rightarrow & F \times F \\ \Rightarrow & (E) \times F \\ \Rightarrow & (E+T) \times F \\ \Rightarrow & (T+T) \times F \\ \Rightarrow & (F+T) \times F \\ \Rightarrow & (a+T) \times F \\ \Rightarrow & (a+F) \times F \\ \Rightarrow & (a+a) \times F \\ \Rightarrow & (a+a) \times (E) \\ \Rightarrow & (a+a) \times (T) \\ \Rightarrow & (a+a) \times (T \times F) \\ \Rightarrow & (a+a) \times (F \times F) \\ \Rightarrow & (a+a) \times (a \times F) \\ \Rightarrow & (a+a) \times (a \times a) \end{array}$$



(b) Convert the CFG in (a) into an equivalent PDA (using the procedure discussed in class).

Solution.



5. (10 points) Prove, using the pumping lemma, that $\{a^n b^n c^n \mid n \ge 1\}$ is not context free.

Solution.

Suppose $\{a^n b^n c^n \mid n \ge 1\}$ is context-free, we take s to be $a^p b^p c^p$, where p is the pumping length. There are three ways to divide s into uvxyz such that |vy| > 0 and $|vxy| \le p$: Case1: vxy falls in a^p . When we pump up the string the number of a increases while the number of others remain. Since the numbers of each letter are unequal, the pumped string is not in $\{a^n b^n c^n \mid n \ge 1\}$.

Case2: vxy contains part of a^p and part of b^p . When we pump up the string the number of a and b increase while the number of c remains. Since the numbers of each letter are unequal, the pumped string is not in $\{a^n b^n c^n \mid n \geq 1\}$.

Case3: vxy falls in b^p . Similar to Caes1.

Case4: vxy contains part of b^p and part of c^p . Similar to Case2.

Case5: vxy falls in c^p . Similar to Caes1.

No matter how we divide s, the string no longer belongs to $\{a^n b^n c^n \mid n \ge 1\}$ when we pump it. A contradiction occurs. Therefore, $\{a^n b^n c^n \mid n \ge 1\}$ is not context free.