CS-172 Computability & Complexity, Fall 2004
Minimizing Finite Automata

Given a DFAM, can we find an equivalent DFA (i.e., one that recognizesdaheedanguage a¥/) with the
minimum possible number of states? This is a very naturadtopure and has important applications to the
efficiency of procedures that use finite automata. In thig noe will see an efficient algorithm that solves
this problem.

To begin, we need a couple of definitions. LMdtbe any DFA with alphabeE. ThenM naturally defines
an equivalence relatiol;; overX*, given by

x ~y y iff M ends in the same state on inpatandy.

Note that the number of equivalence classes is finite (bajongldo the number of states &f).

Now let . = L(M) be the language recognized By. This language also defines a natural equivalence
relation~y, as follows. Call two strings:, y € ¥* indistinguishableby L if, forall z € ¥*, 2z € L <
yz € L. Otherwise we say that andy aredistinguishable Then the relation-, is defined by

x ~p y iff xandy are indistinguishable.

Our first observation is that,; is arefinementof ~; in other words, each equivalence class-gf; is
contained inside an equivalence class-«f (i.e., in other words, each equivalence class-gfconsists of
the union of some equivalence classes-gf):

Proposition 1 ~, is a refinement of-;,.

Proof: Suppose that ~;; y. Then, on inputsc andy, machineM ends up in the same state. But this
means that, for any € ¥*, on inputszz andyz, M must also end up in the same state, and hencand
yz are either both i or both not inL. Thusx andy are indistinguishable, so~p, y. O

Note that Proposition 1 implies that the number of equivedetiasses of ;. is at most the number of states
of M, which is finite.

Now we are in a position to prove our first main result, whicla igersion of the so-calleMyhill-Nerode
Theorem

Theorem 2 The relation~;, defines a DFAV/’ for L whose states correspond to the equivalence classes
of ~ 1. Moreover, this is the unique minimum DFA fbr(up to isomorphism).

Proof: We define the DFAV' = (Q', X, q), F’,¢') as follows. The set of states(® = {[z] : = € £*},
where [z] denotes the equivalence classzoluinder the relation~;. The initial state isg|, = [¢] (the
equivalence class of the empty string), and the acceptatgsarer” = {[z| : = € L} (the equivalence
classes of all strings ift). Finally, the transition function is defined by

8 ([z],a) = [za).



We have to be careful here! We must check #as well-defined, because if is in the same equivalence
class as: then[z] = [y], and our definition would imply that' ([z], a) = §'([y],a) = [ya]. SO we need to
check thafza] = [yal, so that our definition is consistent.

But this follows since ifx, y are in the same equivalence class then € L < yaz € L for anya € ¥ and
anyz € ¥*, and henceca andya are also in the same equivalence class, [we], = [ya]. So our definition
is OK.

Now it is obvious that the machink/’ acceptsl, since by our definition o#’, on inputz it will end up in
state[z], and this state is accepting if and onlyzife L.

Finally, to see thai\/’ has the minimum possible number of states,Metoe any other machine that ac-
ceptsL. By Proposition 1,~,, is a refinement of-;, so~;; has at least as many equivalence classes
as~y. HenceM has at least as many statesMd$. And if M has the same number of states, then the
equivalence relations ;; and~, are in fact identical. O

The Myhill-Nerode Theorem suggests an approach to findiegnimimal DFA for a given languagé.
Suppose we are given a DEW for L. By the Myhill-Nerode Theorem, we can think of each statehef t
minimal automaton}//’, as an equivalence class of,, which in turn, by Proposition 1, is a collection of
equivalence classes ef),, i.e., a collection of states df/. Thus, to construcf/’ from M, we need to
merge togethestates ofA/ until no further merging is possible.

When should two states dff be merged? Wellp and ¢ should be merged iff their equivalence classes
under ~,; belong to thesameequivalence class undey;. Let x,y be in the equivalence classgsyg
respectively of~,,; i.e., on inputse, y, M ends up in states, ¢ respectively. But: ~;, y iff, for all z, the
stringszz, yz are either both i’ or both not inL.. Hence we should mergeandg iff, for all strings z,

the computations ofi/ on z starting in statep andq either both lead to an accepting state or both to a
non-accepting state. We will call stateandq indistinguishablen this case. Otherwise we say theandg
aredistinguishable note that this means there exists a stringhich takes)M from statep to an accepting
state and from staigto a non-accepting state (or vice versa).

We are now ready to present our algorithm for minimizing &rgtutomata. The input is a DFAl =
(Q,%, qo, F, 0); the output is a minimal DFA/’ that accepts the same languagé AsRather than merging
indistinguishable states df/’, the algorithm instead proceeds by first assuming that aéstof )/’ are
indistinguishable, and successively identifying pairstates that are distinguishable.

The algorithm maintains a table of all unordered pairs ofestaf A/. Each entry is binary: it is either
“marked” or “unmarked.” The algorithm also maintains, faich pair, a list of other pairs; the role of these
lists will become clear in a moment. Initially all table éatr are unmarked, and all lists are empty. The
algorithm begins by marking all paif®, ¢} such thatp € F andg € Q — F; clearly all these pairs are
distinguishable (by the empty string). It then cycles ortaeugh all other pairs of states (in any order).
For each such paifp, ¢}, it considers the transitions on each letiee >. If the pair{é(p,a),d(g,a)} is
marked, them andgq are distinguishable (by the string, wherez is a string that distinguishe¥p, a) and
d(q,a)), so the algorithm markép, ¢}; if not, then the algorithm places the pdjs, ¢} on a temporary list
associated with the pa{(p, a), d(¢q,a)} — this means that, if this latter pair ever gets marked, then}
will be marked also. This is ensured because, whenever giogitim marks a pair, it proceeds to mark all
pairs on the associated list (and, recursively, all pairtheir lists, etc.)



Here is the full algorithm:

for {p,q} withp € F,q € @\ F domark{p, ¢}
for all other pairs{p, ¢} do
if 3a € ¥ such that{d(p, a),d(q,a)} is markedthen
mark{p, ¢}
recursively mark all pairs on the list fgp, ¢} etc.
elsefor eacha € ¥ do

if 6(p,a) # 6(q,a) then put{p, ¢} on the list for{d(p, a),d(q,a)}

We need to check carefully that this algorithm really findstla¢ equivalence classes of;, i.e., that it
identifies all pairs of distinguishable states (and onlyséhpairs). One direction is fairly obvious: it should
be clear that the algorithm only markg, ¢} if indeedp andq are distinguishable. [Check this; to do it
formally, you need an induction on the time at which the paimarked.]

The other direction is a bit less obvious. We need to chedkifhmandqg are distinguishable, then they will
get marked. To see this, we use induction on the minimum feoa string that distinguishesandg, i.e.,

a stringz that takesM from p to an accepting state, and framo a non-accepting state. For the base case,
suppose the minimum length of such a string is 0, ke €, the empty string. But this means thaitself

is accepting ang is non-accepting, so the pdip, ¢} is marked in the initialization phase of the algorithm.
For the induction step, let = az’ be a minimum length distinguishing string of length at lehstThen
this means that the states= §(p,a) ands = (¢, a) are distinguished by the shorter strislg Hence, by
the induction hypothesis, the pdir, s} will eventually get marked by the algorithm. If this markiogcurs
before{p, ¢} is considered, thefp, ¢} will get marked when it is considered; otherwige, ¢} will go on
the list for {r, s} and will get marked (at the latest) when the pairs} is marked. Hence, by induction, all
distinguishable pairs eventually get marked.

Finally we analyze the running time of the algorithm. Let thember of states a¥/ ben, and the number
of symbols in alphabet be k. The initialization phase clearly takes tirt&n?). The main loop is executed
O(n?) times (once for each pair), and the running time of eachtitergexcludingthe time for the recursive
marking, isO (k) (proportional to the number of symbaigo be checked), for a total time 6f(kn?). The
time for the recursive marking is clearly proportional te sum of the lengths of all the lists; but, since each
pair {p, ¢} can be placed on at moktists (one for eacla), the sum of the lengths of all the lists is at most
O(kn?). Putting all this together gives a total running time(fkn?).



