
CS–172 Computability & Complexity, Fall 2004

Minimizing Finite Automata

Given a DFAM , can we find an equivalent DFA (i.e., one that recognizes the same language asM ) with the
minimum possible number of states? This is a very natural question, and has important applications to the
efficiency of procedures that use finite automata. In this note, we will see an efficient algorithm that solves
this problem.

To begin, we need a couple of definitions. LetM be any DFA with alphabetΣ. ThenM naturally defines
an equivalence relation∼M overΣ∗, given by

x ∼M y iff M ends in the same state on inputsx andy.

Note that the number of equivalence classes is finite (being equal to the number of states ofM ).

Now let L = L(M) be the language recognized byM . This language also defines a natural equivalence
relation∼L, as follows. Call two stringsx, y ∈ Σ∗ indistinguishableby L if, for all z ∈ Σ∗, xz ∈ L ⇔
yz ∈ L. Otherwise we say thatx andy aredistinguishable. Then the relation∼L is defined by

x ∼L y iff x andy are indistinguishable.

Our first observation is that∼M is a refinementof ∼L; in other words, each equivalence class of∼M is
contained inside an equivalence class of∼L (i.e., in other words, each equivalence class of∼L consists of
the union of some equivalence classes of∼M ):

Proposition 1 ∼M is a refinement of∼L.

Proof: Suppose thatx ∼M y. Then, on inputsx andy, machineM ends up in the same state. But this
means that, for anyz ∈ Σ∗, on inputsxz andyz, M must also end up in the same state, and hencexz and
yz are either both inL or both not inL. Thusx andy are indistinguishable, sox ∼L y.

Note that Proposition 1 implies that the number of equivalence classes of∼L is at most the number of states
of M , which is finite.

Now we are in a position to prove our first main result, which isa version of the so-calledMyhill-Nerode
Theorem:

Theorem 2 The relation∼L defines a DFAM ′ for L whose states correspond to the equivalence classes
of∼L. Moreover, this is the unique minimum DFA forL (up to isomorphism).

Proof: We define the DFAM ′ = (Q′,Σ, q′
0
, F ′, δ′) as follows. The set of states isQ′ = {[x] : x ∈ Σ∗},

where [x] denotes the equivalence class ofx under the relation∼L. The initial state isq′
0

= [ǫ] (the
equivalence class of the empty string), and the accepting states areF ′ = {[x] : x ∈ L} (the equivalence
classes of all strings inL). Finally, the transition function is defined by

δ′([x], a) = [xa].

1



We have to be careful here! We must check thatδ′ is well-defined, because ify is in the same equivalence
class asx then[x] = [y], and our definition would imply thatδ′([x], a) = δ′([y], a) = [ya]. So we need to
check that[xa] = [ya], so that our definition is consistent.

But this follows since ifx, y are in the same equivalence class thenxaz ∈ L ⇔ yaz ∈ L for anya ∈ Σ and
anyz ∈ Σ∗, and hencexa andya are also in the same equivalence class, i.e.,[xa] = [ya]. So our definition
is OK.

Now it is obvious that the machineM ′ acceptsL, since by our definition ofδ′, on inputx it will end up in
state[x], and this state is accepting if and only ifx ∈ L.

Finally, to see thatM ′ has the minimum possible number of states, letM be any other machine that ac-
ceptsL. By Proposition 1,∼M is a refinement of∼L, so∼M has at least as many equivalence classes
as∼L. HenceM has at least as many states asM ′. And if M has the same number of states, then the
equivalence relations∼M and∼L are in fact identical.

The Myhill-Nerode Theorem suggests an approach to finding the minimal DFA for a given languageL.
Suppose we are given a DFAM for L. By the Myhill-Nerode Theorem, we can think of each state of the
minimal automaton,M ′, as an equivalence class of∼L, which in turn, by Proposition 1, is a collection of
equivalence classes of∼M , i.e., a collection of states ofM . Thus, to constructM ′ from M , we need to
merge togetherstates ofM until no further merging is possible.

When should two states ofM be merged? Well,p andq should be merged iff their equivalence classes
under∼M belong to thesameequivalence class under∼L. Let x, y be in the equivalence classesp, q

respectively of∼M ; i.e., on inputsx, y, M ends up in statesp, q respectively. Butx ∼L y iff, for all z, the
stringsxz, yz are either both inL or both not inL. Hence we should mergep andq iff, for all strings z,
the computations ofM on z starting in statesp andq either both lead to an accepting state or both to a
non-accepting state. We will call statesp andq indistinguishablein this case. Otherwise we say thatp andq

aredistinguishable; note that this means there exists a stringz which takesM from statep to an accepting
state and from stateq to a non-accepting state (or vice versa).

We are now ready to present our algorithm for minimizing finite automata. The input is a DFAM =
(Q,Σ, q0, F, δ); the output is a minimal DFAM ′ that accepts the same language asM . Rather than merging
indistinguishable states ofM ′, the algorithm instead proceeds by first assuming that all states ofM ′ are
indistinguishable, and successively identifying pairs ofstates that are distinguishable.

The algorithm maintains a table of all unordered pairs of states ofM . Each entry is binary: it is either
“marked” or “unmarked.” The algorithm also maintains, for each pair, a list of other pairs; the role of these
lists will become clear in a moment. Initially all table entries are unmarked, and all lists are empty. The
algorithm begins by marking all pairs{p, q} such thatp ∈ F andq ∈ Q − F ; clearly all these pairs are
distinguishable (by the empty string). It then cycles once through all other pairs of states (in any order).
For each such pair{p, q}, it considers the transitions on each lettera ∈ Σ. If the pair{δ(p, a), δ(q, a)} is
marked, thenp andq are distinguishable (by the stringaz, wherez is a string that distinguishesδ(p, a) and
δ(q, a)), so the algorithm marks{p, q}; if not, then the algorithm places the pair{p, q} on a temporary list
associated with the pair{δ(p, a), δ(q, a)} — this means that, if this latter pair ever gets marked, then{p, q}
will be marked also. This is ensured because, whenever the algorithm marks a pair, it proceeds to mark all
pairs on the associated list (and, recursively, all pairs ontheir lists, etc.)

2



Here is the full algorithm:

for {p, q} with p ∈ F , q ∈ Q \ F do mark{p, q}
for all other pairs{p, q} do

if ∃ a ∈ Σ such that{δ(p, a), δ(q, a)} is markedthen
mark{p, q}
recursively mark all pairs on the list for{p, q} etc.

else for eacha ∈ Σ do
if δ(p, a) 6= δ(q, a) then put{p, q} on the list for{δ(p, a), δ(q, a)}

We need to check carefully that this algorithm really finds all the equivalence classes of∼L, i.e., that it
identifies all pairs of distinguishable states (and only those pairs). One direction is fairly obvious: it should
be clear that the algorithm only marks{p, q} if indeedp andq are distinguishable. [Check this; to do it
formally, you need an induction on the time at which the pair is marked.]

The other direction is a bit less obvious. We need to check that, if p andq are distinguishable, then they will
get marked. To see this, we use induction on the minimum length of a string that distinguishesp andq, i.e.,
a stringz that takesM from p to an accepting state, and fromq to a non-accepting state. For the base case,
suppose the minimum length of such a string is 0, i.e.,z = ǫ, the empty string. But this means thatp itself
is accepting andq is non-accepting, so the pair{p, q} is marked in the initialization phase of the algorithm.
For the induction step, letz = az′ be a minimum length distinguishing string of length at least1. Then
this means that the statesr = δ(p, a) ands = δ(q, a) are distinguished by the shorter stringz′. Hence, by
the induction hypothesis, the pair{r, s} will eventually get marked by the algorithm. If this markingoccurs
before{p, q} is considered, then{p, q} will get marked when it is considered; otherwise,{p, q} will go on
the list for{r, s} and will get marked (at the latest) when the pair{r, s} is marked. Hence, by induction, all
distinguishable pairs eventually get marked.

Finally we analyze the running time of the algorithm. Let thenumber of states ofM ben, and the number
of symbols in alphabetΣ bek. The initialization phase clearly takes timeO(n2). The main loop is executed
O(n2) times (once for each pair), and the running time of each iteration, excludingthe time for the recursive
marking, isO(k) (proportional to the number of symbolsa to be checked), for a total time ofO(kn2). The
time for the recursive marking is clearly proportional to the sum of the lengths of all the lists; but, since each
pair {p, q} can be placed on at mostk lists (one for eacha), the sum of the lengths of all the lists is at most
O(kn2). Putting all this together gives a total running time ofO(kn2).

3


