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Space Complexity

Definition 1
Let M be a TM that halts on all inputs. The space complexity of M is
f : N→ N where f (n) is the maximum number of tape cells that M
scans on any input of length n.
If the space complexity of M is f (n), we say M runs in space f (n).

Definition 2
If N is an NTM wherein all branches of its computation halts on all
inputs. The space complexity of N is f : N→ N where f (n) is the
maximum number of tape cells that N scans on any branch of its
computation for any input of length n.
If the space complexity of N is f (n), we say N runs in space f (n).
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Space Complexity Classes

Definition 3
Let f : N→ R+. The space complexity classes, SPACE(f (n)) and
NSPACE(f (n)), are

SPACE(f (n)) = {L : L is decided by an O(f (n)) space TM}
NSPACE(f (n)) = {L : L is decided by an O(f (n)) space NTM}

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 3 / 35



SAT ∈ SPACE(n)

Example 4
Give a TM that decides SAT in space O(n).

Proof.
Consider
M1 = “On input 〈φ〉where φ is a Boolean formula:

1 For each truth assignment to x1, x2, . . . , xm of φ, do
1 Evaluate φ on the truth assignment.

2 If φ ever eavluates to 1, accept; otherwise, reject.”
M1 runs in space O(n) since it only needs to store the current truth
assignment for m variables and m ∈ O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 4 / 35



Universality of NFA’s

Consider ALLNFA = {〈A〉 : A is an NFA and L(A) = Σ∗}.
I ALLNFA is not known to be in NP or in coNP.

Example 5
Show ALLNFA ∈ coNSPACE(n).

Proof.
Consider
N = “On input 〈A〉where A is an NFA with q states:

1 Place a marker on the start state of A.

2 Repeat 2q times:

1 Nondeterministically select an input symbol a and simulate A on a by
changing (or adding) positions of the markers on A’s states.

3 If a marker is ever place on an accept state, reject; otherwise, accept.”

Observe that if A rejects any string, it rejects a string of length at most 2q. Hence N
decides ALLNFA. Moreover, N only needs to store locations of markers and the loop
counter. N runs in space O(n).
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Savitch’s Theorem

Theorem 6 (Savitch)
For f : N→ R+ with f (n) ≥ n, NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.
Let N be an NTM deciding A in space f (n). Assume N has a unique accepting
configuration caccept (how?). We construct a TM M deciding A in space O(f 2(n)). Let w
be an input to N, c1, c2 configurations of N on w, and t ∈ N. Consider
CANYIELD = “On input c1, c2, and t:

1 If t = 1, test whether c1 = c2, or c1 yields c2 in N. If either succeeds, accept;
otherwise, reject.

2 If t > 1, for each configuration cm of N on w do

1 Run CANYIELD(c1, cm,
t
2 ).

2 Run CANYIELD(cm, c2,
t
2 ).

3 If both accept, accept.
3 Reject.”

Observe that CANYIELD needs to store the step number, c1, c2, and t for recursion.
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Savitch’s Theorem

Proof (cont’d).
We select a constant d so that N has at most 2df(n) configurations where n = |w|.
M = “On input w:

1 Run CANYIELD(cstart, caccept, 2df(n)).”

Since t = 2df(n), the depth of recusion is O(lg 2df(n)) = O(f (n)). Moreover, CANYIELD
can store its step number, c1, c2, t in space O(f (n)). Thus M runs in space
O(f (n)× f (n)) = O(f 2(n)).
A technical problem for M is to compute f (n) in space O(f (n)). This can be avoided as
follows. Instead of computing f (n), M tries f (n) = 1, 2, 3, . . .. For each f (n) = i, M calls
CANYIELD as before but also checks if N reaches a configuration of length i + 1 from
cstart. If N reaches caccept, M accepts as before. If N reaches a configuration of length
i + 1 but fails to reach caccept, M continues with f (n) = i + 1. Otherwise, all
configurations of N have length ≤ f (n). N still fails to reach caccept in 2df(n) time. Hence
M rejects.
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The Class PSPACE

Definition 7
PSPACE is the class of languages decidable by TM’s in polynomial
space. That is,

PSPACE =
⋃

k

SPACE(nk).

Consider the class of langauges decidable by NTM’s in
polynomial space NPSPACE =

⋃
k NSPACE(nk).

By Savitch’s Theorem, NSPACE(nk) ⊆ SPACE(n2k). Clearly,
SPACE(nk) ⊆ NSPACE(nk). Hence NPSPACE = PSPACE.
Recall SAT ∈ SPACE(n) and ALLNFA ∈ coNSPACE(n). By Savitch’s
Theorem, ALLNFA ∈ NSPACE(n) ⊆ SPACE(n2). Hence
ALLNFA ∈ SPACE(n2) (why?). SAT,ALLNFA ∈ PSPACE.
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P, NP, PSPACE, and EXPTIME

P ⊆ PSPACE
I A TM running in time t(n) uses space t(n) (provided t(n) ≥ n).

Similarly, NP ⊆ NPSPACE and thus NP ⊆ PSPACE.
PSPACE ⊆ EXPTIME = ∪kTIME(2nk

)
I A TM running in space f (n) has at most f (n)2O(f (n)) different

configurations (provided f (n) ≥ n).
F A configuration contains the current state, the location of tape head,

and the tape contents.
In summary, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

I We will show P 6= EXPTIME.

P NP EXPTIMEPSPACE
NPSPACE
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PSPACE-Completeness

Definition 8
A language B is PSPACE-complete if it satisfies

B ∈ PSPACE; and
A ≤P B for every A ∈ PSPACE.

If B only satisfies the second condition, we say it is PSPACE-hard.

We do not define “polynomial space reduction” nor use it.
Intuitively, a complete problem is most difficult in the class.
If we can solve a complete problem, we can solve all problems in
the same class easily.
Polynomial space reduction is not easy at all.

I Recall SAT ∈ SPACE(n).
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TQBF

Recall the universal quantifier ∀ and the existential quantifier ∃.
When we use quantifiers, we should specify a universe.

I ∀x∃y[x < y ∧ y < x + 1] is false if Z is the universe.
I ∀x∃y[x < y ∧ y < x + 1] is true if Q is the universe.

A quantified Boolean formula is a quantified Boolean formula
over the universe B.
Any formula with quantifiers can be converted to a formula
begins with quantifiers.

I ∀x[x ≥ 0 =⇒ ∃y[y2 = x]] is equivalent to ∀x∃y[x ≥ 0 =⇒ y2 = x].
I This is called prenex normal form.

We always consider formulae in prenex normal form.
If all variables are quantified in a formula, we say the formula is
fully quantified (or a sentence).
Consider

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.
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TQBF is PSPACE-Complete

Theorem 9

TQBF is PSPACE-complete.

Proof.
We first show TQBF ∈ PSPACE. Consider
T = “On input 〈φ〉where φ is a fully quantified Boolean formula:

1 If φ has no quantifier, it is a Boolean formula without variables. If φ evaluates to
1, accept; otherwise, reject.

2 If φ is ∃xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts either,
accept; otherwise, reject.

3 If φ is ∀xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts both, accept;
otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the
value of one variable. Hence T runs in space O(n).
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TQBF is PSPACE-Complete

Proof (cont’d).
Let M be a TM deciding A in space nk. For any string w, we construct a quantified
Boolean formula φ such that M accepts w if and only if φ is true. More precisely, let
c1, c2 be collections of variables representing two configurations, and t > 0, we
construct a formula φc1,c2,t such that φc1,c2,t ∧ c1 = c1 ∧ c2 = c2 is true if and only if M
can go from the configuration c1 to the configuration c2 in ≤ t steps.
To construct φc1,c2,1, we check if c1 = c2, or the configuration represented by c1 yields
the configuration represented by c2 in M. We use the technique in the proof of
Cook-Levin Theorem. That is, we construct a Boolean formula stating that all
windows on the rows c1, c2 are valid. Observe that |φc1,c2,1| ∈ O(nk). For t > 1, let

φc1,c2,t = ∃m∀c3∀c4

[
((c3 = c1 ∧ c4 = m) ∨ (c3 = m ∧ c4 = c2)) =⇒ φc3,c4,

t
2

]
Note that |φc1,c2,t| = γnk + |φc3,c4,

t
2
| for some constant γ.

Assume M has a unique accepting configuration caccept. Choose a constant d so that M
has at most 2dnk

configurations on w. Then φ
cstart,caccept,2dnk is true if and only if M

accepts w. Moreover, the depth of recursion is O(lg 2dnk
) = O(nk). Each level increases

the size of φc1,c2,t by O(nk). Hence |φ
cstart,caccept,2dnk | ∈ O(n2k).
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TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!
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Formula Games

Let φ = ∃x1∀x2∃x3 · · ·Qxk[ψ] (Q denotes ∃ or ∀) be a quantified
Boolean formula in prenex normal form.
In a formula game, Player A and Player E take turns selecting
values for x1, x2, . . . , xk.

I Player A selects values of ∀-quantified variables;
I Player E selects values of ∃-quantified variables.

The order of play is determinied by φ.
At the end of play, all variables have their values.

I Player E wins if ψ evaluates to 1;
I Player A wins if ψ evaluates to 0.

A player has a winning strategy for the game associated with φ if
the player wins when both sides play optimally.
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Formula Games

Example 10
Let φ1 = ∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)]. Show Player E has
a winning strategy.

Proof.
Consider the following strategy for Player E

1 Player E starts by selecting x1 = 1.
2 Player E selects the value of x3 as follows.

1 If Player A selects x2 = 0, Player E selects x3 = 1;
2 If Player A selects x2 = 1, Player E selects x3 = 0.

It is easy to verify that Player E always wins.

Consider
FORMULAGAME = {〈φ〉 : Player E has a winning strategy in the

formula game associated with φ}.
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FORMULAGAME is PSPACE-Complete

Theorem 11
FORMULAGAME is PSPACE-complete.

Proof.
The formula φ = ∃x1∀x2∃x3 · · · [ψ] is true if there is a value of x1 such
that no matter what value of x2 is ∃x3 · · · [ψ] is true. This is exactly
when Player E has a winning strategy.
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Generalized Geography

In generalized geography, a directed graph G with a designated
start node b (a path of length 0) are given.
Start by Player I. Player I and II takes turns to move.

I At each move, a player selects a neighboring node that form a
simple path in the graph.

The first player fails to extend the path loses the game.
Consider
GG = {〈G, b〉 : Player I has a winning strategy for the generalize

geography game played on G starting at node b}

1
2

3

4

5

6

7

8
9

Player I wins by selecting node 3
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GG is PSPACE-Complete

Theorem 12
GG is PSPACE-complete.

Proof.
We first show GG ∈ PSPACE. Consider
M = “On input 〈G, b〉where G is a directed graph and b a node of G:

1 If b has outdegree 0, reject.
2 Remove b and all connected edges to obtain G′.
3 For each nodes b1, b2, . . . , bk pointed by b in G, call M on 〈G′, bi〉 recursively.

4 If M accepts 〈G′, bi〉 for all i, reject. Otherwise, accept.”

The depth of recursion is the number of nodes in G. At each level, M stores a node.
Hence M runs in space O(n).
We now give a polynomial time reduction of TQBF to GG. Let φ = ∃x1∀x2∃x3 · · · ∃xk[ψ]
be a quantified Boolean formula where ψ is in 3CNF. (If φ is not alternating or ends
with an ∃-quantifier, add dummy variables.)
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GG is PSPACE-Complete

x1

x3

x2

b

...

c

c1

c2

...

cm

x1

x2

x3

x2

x3

1 0

xk

φ = ∃x1∀x2 · · · ∃xk[(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · · ) ∧ · · · ]
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GG is PSPACE-Complete

Proof.
We construct G as follows.

For each variable xi, a variable gadget consists of a diamond. The left branch
denotes the value of xi is 1; the right branch denotes the value 0.

A special node c points to every clause gadget.

For each clause, a clause gadget has four nodes. A node cj points to three nodes
for literals. Each literal node in turn points to a node in variable gadgets that
makes the literal true.

The designated start node b is the top node in the variable gadget for x1. The
bottom node of the variable gadget for xk points to the special node c.

The game G starts by selecting values for variables x1, x2, . . . , xk. Player I selects values
for x1, x3, . . . , x2h+1, . . . xk; Player II selects values for x2, x4, . . . , x2h, . . . , xk−1. Then
Player II is forced to move to the special node c.
At the special node c, Player II tries to select a clause. If a clause is satisfied, all its
literals are blocked by value nodes in variable gadgets. Player II will lose. If a clause is
falsified, Player II can move to a value node in variable gadgets and win. Hence
Player II tries to select a falsified clause. Hence φ is true if and only if Player I has a
winning strategy in G.
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TM’s with Sublinear Space

0 01 1 0110

control
b ba a a

read-only

read-write

Figure: Schematics for TM’s using Sublinear Space

For sublinear space, we consider TM’s with two tapes.
I a read-only input tape containing the input string; and
I a read-write work tape.

The input head cannot move outside the portion of the tape
containing the input.
The cells scanned on the work tape contribute to the space
complexity.
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Space Complexity Classes L and NL

Definition 13
L (= SPACE(log n)) is the class of languages decidable by a TM in
logarithmic space.
NL (= NSPACE(log n)) is the class of languages decidable by an NTM
in logarithmic space.

Example 14

A = {0k1k : k ≥ 0} ∈ L.

Proof.
Consider
M = “On input w:

1 Check if w is of the form 0∗1∗. If not, reject.
2 Count the number of 0’s and 1’s on the work tape.
3 If they are equal, accept; otherwise, reject.”
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PATH is in NL

Example 15
Recall PATH = {〈G, s, t〉 : G is a directed graph with a path from s to t}.
Show PATH ∈ NL.

Proof.
Consider
N = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Repeat m times (m is the number of nodes in G)
1 Nondeterministically select the next node for the path. If the next

node is t, accept.
2 Reject.

N only needs to store the current node on the work tape. Hence N runs
in space O(lg n).

We do not know if PATH ∈ L.
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Configurations of TM’s with Sublinear Space

Definition 16
Let M be a TM with a separate read-only input tape and w an input
string. A configuration of M on w consists of a state, the contents of
work tape, and locations of the two tape heads.

Note that the input w is no longer a part of the configuration.
If M runs in space f (n) and |w| = n, the number of configurations
of M on w is n2O(f (n)).

I Suppose M has q states and g tape symbols. The number of
configurations is at most qnf (n)gf (n) ∈ n2O(f (n)).

Note that when f (n) ≥ lg n, n2O(f (n)) = 2O(f (n)).
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Savitch’s Theorem Revisited

Recall that we assume f (n) ≥ n in the theorem.
We can in fact relax the assumption to f (n) ≥ lg n.
The proof is identical except that we are simulating an NTM N
with a read-only input tape.
When f (n) ≥ lg n, the depth of recursion is lg(n2O(f (n))) =

lg n + O(f (n)) = O(f (n)). At each level, lg(n2O(f (n))) = O(f (n))
space is needed.
Hence NSPACE(f (n)) ⊆ SPACE(f 2(n)) when f (n) ≥ lg n.
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Log Space Reducibility

Definition 17
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read-write work tape. The work tape
may contain O(lg n) symbols.

Definition 18
f : Σ∗ → Σ∗is a log space computable function if there is a log space
transducer that halts with f (w) in its work tape on every input w.

Definition 19
A language A is log space reducible to a language B (written A ≤L B) if
there is a log space computable function f such that w ∈ A if and only
if f (w) ∈ B for every w.
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Properties about Log Space Reducibility

Theorem 20
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.
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NL-Completeness

Definition 21
A language B is NL-complete if

B ∈ NL; and
A ≤L B for every A ∈ NL.

Note that we require A ≤L B instead of A ≤P B.
We will show NL ⊆ P (Corollary 24).
Hence every two problems in NL (except ∅ and Σ∗) are
polynomial time reducible to each other (why?).

Corollary 22
If any NL-complete language is in L, then L = NL.
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NL-Completeness

Theorem 23
PATH is NL-complete.

Proof.
Let an NTM M decide A in O(lg n) space. We assume M has a unique accepting
configuration. Given w, we construct 〈G, s, t〉 in log space such that M accepts w if and
only if G has a path from s to t.
Nodes of G are configurations of M on w. For configurations c1 and c2, the edge (c1, c2)
is in G if c1 yields c2 in M. s and t are the start and accepting configurations of M on w
respectively.
Clearly, M accepts w if and only if G has a path from s to t. It remains to show that G
can be computed by a log space transducer. Observe that a configuration of M on w
can be represented in c lg n space for some c. The transducer simply enumerates all
string of legnth c lg n and outputs those that are configurations of M on w. The edges
(c1, c2)’s are computed similarly. The transducer only needs to read the tape contents
under the head locations in c1 to decide whether c1 yields c2 in M.
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NL ⊆ P

Corollary 24

NL ⊆ P.

Proof.
A TM using space f (n) has at most n2O(f (n)) configurations and hence
runs in time n2O(f (n)). A log space transducer therefore runs in
polynomial time. Hence any problem in NL is polynomial time
reducible to PATH. The result follows by PATH ∈ P.

The polynomial time reduction in the proof of Theorem 9 can be
computed in log space.
Hence TQBF is PSPACE-complete with respect to log space
reducibility.
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NL = coNL

Theorem 25 (Immerman–Szelepcsényi)
NL = coNL.

Proof.
We will give an NTM M deciding PATH in space O(lg n). Hence PATH ∈ NL. Recall
that PATH is NL-complete. For any A ∈ NL, we have A ≤L PATH. Hence A ≤L PATH.
Since PATH ∈ NL, A ∈ NL. That is, A = A ∈ coNL. We have NL ⊆ coNL. For any
B ∈ coNL, we have B ∈ NL. Hence B ≤L PATH. Thus B = B ≤L PATH. Since
PATH ∈ NL, we have B ∈ NL. We have coNL ⊆ NL.
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NL = coNL

Proof (cont’d).
Input: On 〈G, s, t〉
c0 = 1;
// G has m nodes

foreach i = 0, . . . ,m− 1 do
ci+1 = 1 ; // ci+1 counts the nodes reached from s in ≤ i + 1 steps

foreach node v 6= s in G do
d = 0 ; // d recounts the nodes reached from s in ≤ i steps

foreach node u in G do
Nondeterministically continue;
Nondeterministically follow a path of length ≤ i from s;
Reject if the path does not end at u;
d = d + 1;
if (u, v) is an edge in G then

ci+1 = ci+1 + 1;
break;

end
if d 6= ci then Reject;
; // check if the result is correct

end
end
// cm = number of nodes reached from sMing-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 33 / 35



NL = coNL

Proof (cont’d).

d = 0 ; // d recounts the nodes reached from s
foreach node u in G do

Nondeterministically continue;
Nondeterministically follow a path of length ≤ m from s;
Reject if the path does not end at u;
if u = t then Reject;
; // do not count t
d = d + 1;

end
if d 6= cm then Reject;
else Accept;
;

The NTM M counts the nodes reached from s in the first phrase. The variable ci is the
number of nodes reached from s in ≤ i steps. Initially, c0 = 1. To compute ci+1 from ci,
M goes through each node v 6= s in G. For each v, M tries to find all nodes reached
from s in ≤ i steps. For each such node u, M increments d. It also increments ci+1 if u
points to v. If d = ci, M has found all node reached from s in ≤ i steps. Hence ci+1 is
correct. M proceeds to compute ci+2.
At the second phrase, M counts nodes reached from s but excluding t. If s reaches the
same set of nodes, t is not reachable from s. M accepts.
M needs to store u, v, ci, ci+1, d, i and a pointer to the head of a path. M runs in O(lg n)
space.
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L,NL,P, and PSPACE

The relationship between different complexity classes now
becomes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

We will prove NL ( PSPACE in the next chapter.
Hence at least on inclusion is propcer.

I But we do not know which one.
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