# Theory of Computing Space Complexity 

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019
(original created by Bow-Yaw Wang)

## Space Complexity

## Definition 1

Let $M$ be a TM that halts on all inputs. The space complexity of $M$ is $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)$ is the maximum number of tape cells that $M$ scans on any input of length $n$.
If the space complexity of $M$ is $f(n)$, we say $M$ runs in space $f(n)$.

## Definition 2

If $N$ is an NTM wherein all branches of its computation halts on all inputs. The space complexity of $N$ is $f: \mathbb{N} \rightarrow \mathbb{N}$ where $f(n)$ is the maximum number of tape cells that $N$ scans on any branch of its computation for any input of length $n$.
If the space complexity of $N$ is $f(n)$, we say $N$ runs in space $f(n)$.

## Space Complexity Classes

## Definition 3

Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$. The space complexity classes, $\underline{\operatorname{SPACE}(f(n)) \text { and }}$ NSPACE(f(n)), are
$\operatorname{SPACE}(f(n))=\{L: L$ is decided by an $O(f(n))$ space TM $\}$
$\operatorname{NSPACE}(f(n))=\{L: L$ is decided by an $O(f(n))$ space NTM $\}$

## $S A T \in \operatorname{SPACE}(n)$

## Example 4

Give a TM that decides $S A T$ in space $O(n)$.

## Proof.

Consider
$M_{1}=$ "On input $\langle\phi\rangle$ where $\phi$ is a Boolean formula:
(1) For each truth assignment to $x_{1}, x_{2}, \ldots, x_{m}$ of $\phi$, do
(1) Evaluate $\phi$ on the truth assignment.
(2) If $\phi$ ever eavluates to 1, accept; otherwise, reject."
$M_{1}$ runs in space $O(n)$ since it only needs to store the current truth assignment for $m$ variables and $m \in O(n)$.

## Universality of NFA's

- Consider $A L L_{\mathrm{NFA}}=\left\{\langle A\rangle: A\right.$ is an NFA and $\left.L(A)=\Sigma^{*}\right\}$.
- $A L L_{\mathrm{NFA}}$ is not known to be in NP or in coNP.


## Example 5

Show $A L L_{\mathrm{NFA}} \in \operatorname{coNSPACE}(n)$.

## Proof.

Consider
$N=$ "On input $\langle A\rangle$ where $A$ is an NFA with $q$ states:
(1) Place a marker on the start state of $A$.
(2) Repeat $2^{q}$ times:
(1) Nondeterministically select an input symbol $a$ and simulate $A$ on $a$ by changing (or adding) positions of the markers on $A^{\prime}$ s states.
(3) If a marker is ever place on an accept state, reject; otherwise, accept."

Observe that if $A$ rejects any string, it rejects a string of length at most $2^{q}$. Hence $N$ decides $\overline{A L L_{\text {NFA }}}$. Moreover, $N$ only needs to store locations of markers and the loop counter. $N$ runs in space $O(n)$.

## Savitch's Theorem

## Theorem 6 (Savitch)

For $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$with $f(n) \geq n, \operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$.

## Proof.

Let $N$ be an NTM deciding $A$ in space $f(n)$. Assume $N$ has a unique accepting configuration $c_{\text {accept }}$ (how?). We construct a TM $M$ deciding $A$ in space $O\left(f^{2}(n)\right)$. Let $w$ be an input to $N, c_{1}, c_{2}$ configurations of $N$ on $w$, and $t \in \mathbb{N}$. Consider CANYIELD $=$ "On input $c_{1}, c_{2}$, and $t$ :
(1) If $t=1$, test whether $c_{1}=c_{2}$, or $c_{1}$ yields $c_{2}$ in $N$. If either succeeds, accept; otherwise, reject.
(2) If $t>1$, for each configuration $c_{m}$ of $N$ on $w$ do
(1) Run CANYIELD $\left(c_{1}, c_{m}, \frac{t}{2}\right)$.
(2) Run CANYIELD $\left(c_{m}, c_{2}, \frac{t}{2}\right)$.
(3) If both accept, accept.
(3) Reject."

Observe that CANYIELD needs to store the step number, $c_{1}, c_{2}$, and $t$ for recursion.

## Savitch's Theorem

## Proof (cont'd).

We select a constant $d$ so that $N$ has at most $2^{d f(n)}$ configurations where $n=|w|$. $M=$ "On input $w$ :
(1) Run CANYIELD $\left(c_{\text {start }}, c_{\text {accept }}, 2^{d f(n)}\right) . "$

Since $t=2^{d f(n)}$, the depth of recusion is $O\left(\lg 2^{d f(n)}\right)=O(f(n))$. Moreover, CANYIELD can store its step number, $c_{1}, c_{2}, t$ in space $O(f(n))$. Thus $M$ runs in space $O(f(n) \times f(n))=O\left(f^{2}(n)\right)$.
A technical problem for $M$ is to compute $f(n)$ in space $O(f(n))$. This can be avoided as follows. Instead of computing $f(n), M$ tries $f(n)=1,2,3, \ldots$. For each $f(n)=i, M$ calls CANYIELD as before but also checks if $N$ reaches a configuration of length $i+1$ from $c_{\text {start }}$. If $N$ reaches $c_{\text {accept }}, M$ accepts as before. If $N$ reaches a configuration of length $i+1$ but fails to reach $c_{\text {accept }}, M$ continues with $f(n)=i+1$. Otherwise, all configurations of $N$ have length $\leq f(n)$. $N$ still fails to reach $c_{\text {accept }}$ in $2^{d f(n)}$ time. Hence $M$ rejects.

## The Class PSPACE

## Definition 7

PSPACE is the class of languages decidable by TM's in polynomial space. That is,

$$
\operatorname{PSPACE}=\bigcup_{k} \operatorname{SPACE}\left(n^{k}\right) .
$$

- Consider the class of langauges decidable by NTM's in polynomial space NPSPACE $=\bigcup_{k} \operatorname{NSPACE}\left(n^{k}\right)$.
- By Savitch's Theorem, $\operatorname{NSPACE}\left(n^{k}\right) \subseteq \operatorname{SPACE}\left(n^{2 k}\right)$. Clearly, $\operatorname{SPACE}\left(n^{k}\right) \subseteq \operatorname{NSPACE}\left(n^{k}\right)$. Hence NPSPACE $=$ PSPACE.
- Recall SAT $\in \operatorname{SPACE}(n)$ and $A L L_{\mathrm{NFA}} \in \operatorname{coNSPACE}(n)$. By Savitch's Theorem, $\overline{A L L_{\mathrm{NFA}}} \in \operatorname{NSPACE}(n) \subseteq \operatorname{SPACE}\left(n^{2}\right)$. Hence $A L L_{\mathrm{NFA}} \in \operatorname{SPACE}\left(n^{2}\right)$ (why?). $S A T, A L L_{\mathrm{NFA}} \in P S P A C E$.


## P, NP, PSPACE, and EXPTIME

- $P \subseteq P S P A C E$
- A TM running in time $t(n)$ uses space $t(n)$ (provided $t(n) \geq n$ ).
- Similarly, $N P \subseteq$ NPSPACE and thus $N P \subseteq P S P A C E$.
- PSPACE $\subseteq E X P T I M E=\cup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)$
- A TM running in space $f(n)$ has at most $f(n) 2^{O(f(n))}$ different configurations (provided $f(n) \geq n$ ).
$\star$ A configuration contains the current state, the location of tape head, and the tape contents.
- In summary, $P \subseteq N P \subseteq P S P A C E=N P S P A C E \subseteq E X P T I M E$.
- We will show $P \neq E$ EXPTIME.



## PSPACE-Completeness

## Definition 8

A language $B$ is PSPACE-complete if it satisfies

- $B \in P S P A C E$; and
- $A \leq_{P} B$ for every $A \in P S P A C E$.

If $B$ only satisfies the second condition, we say it is PSPACE-hard.

- We do not define "polynomial space reduction" nor use it.
- Intuitively, a complete problem is most difficult in the class.
- If we can solve a complete problem, we can solve all problems in the same class easily.
- Polynomial space reduction is not easy at all.
- Recall SAT $\in \operatorname{SPACE}(n)$.


## TQBF

- Recall the universal quantifier $\forall$ and the existential quantifier $\exists$.
- When we use quantifiers, we should specify a universe.
- $\forall x \exists y[x<y \wedge y<x+1]$ is false if $\mathbb{Z}$ is the universe.
- $\forall x \exists y[x<y \wedge y<x+1]$ is true if $\mathbb{Q}$ is the universe.
- A quantified Boolean formula is a quantified Boolean formula over the universe $\mathbb{B}$.
- Any formula with quantifiers can be converted to a formula begins with quantifiers.
- $\forall x\left[x \geq 0 \Longrightarrow \exists y\left[y^{2}=x\right]\right]$ is equivalent to $\forall x \exists y\left[x \geq 0 \Longrightarrow y^{2}=x\right]$.
- This is called prenex normal form.
- We always consider formulae in prenex normal form.
- If all variables are quantified in a formula, we say the formula is fully quantified (or a sentence).
- Consider
$T Q B F=\{\langle\phi\rangle: \phi$ is a true fully quantified Boolean formula $\}$.


## TQBF is PSPACE-Complete

## Theorem 9

TQBF is PSPACE-complete.

## Proof.

We first show $T Q B F \in P S P A C E$. Consider
$T=$ "On input $\langle\phi\rangle$ where $\phi$ is a fully quantified Boolean formula:
(1) If $\phi$ has no quantifier, it is a Boolean formula without variables. If $\phi$ evaluates to 1, accept; otherwise, reject.
(2) If $\phi$ is $\exists x \psi$, call $T$ recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If $T$ accepts either, accept; otherwise, reject.
(3) If $\phi$ is $\forall x \psi$, call $T$ recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If $T$ accepts both, accept; otherwise, reject.
The depth of recursion is the number of variables. At each level, $T$ needs to store the value of one variable. Hence $T$ runs in space $O(n)$.

## TQBF is PSPACE-Complete

## Proof (cont'd).

Let $M$ be a TM deciding $A$ in space $n^{k}$. For any string $w$, we construct a quantified Boolean formula $\phi$ such that $M$ accepts $w$ if and only if $\phi$ is true. More precisely, let $c_{1}, c_{2}$ be collections of variables representing two configurations, and $t>0$, we construct a formula $\phi_{c_{1}, c_{2}, t}$ such that $\phi_{c_{1}, c_{2}, t} \wedge c_{1}=c_{1} \wedge c_{2}=c_{2}$ is true if and only if $M$ can go from the configuration $\mathrm{C}_{1}$ to the configuration $\mathrm{C}_{2}$ in $\leq t$ steps.
To construct $\phi_{c_{1}, c_{2}, 1}$, we check if $c_{1}=c_{2}$, or the configuration represented by $c_{1}$ yields the configuration represented by $c_{2}$ in $M$. We use the technique in the proof of Cook-Levin Theorem. That is, we construct a Boolean formula stating that all windows on the rows $c_{1}, c_{2}$ are valid. Observe that $\left|\phi_{c_{1}, c_{2}, 1}\right| \in O\left(n^{k}\right)$. For $t>1$, let

$$
\phi_{c_{1}, c_{2}, t}=\exists m \forall c_{3} \forall c_{4}\left[\left(\left(c_{3}=c_{1} \wedge c_{4}=m\right) \vee\left(c_{3}=m \wedge c_{4}=c_{2}\right)\right) \Longrightarrow \phi_{c_{3}, c_{4}, \frac{t}{2}}\right]
$$

Note that $\left|\phi_{c_{1}, c_{2}, t}\right|=\gamma n^{k}+\left|\phi_{c_{3}, c_{4}, \frac{t}{2}}\right|$ for some constant $\gamma$.
Assume $M$ has a unique accepting configuration $c_{\text {accept }}$. Choose a constant $d$ so that $M$ has at most $2^{d n^{k}}$ configurations on $w$. Then $\phi_{c_{\text {start }, ~}^{\text {accept }}, 2^{d n k}}$ is true if and only if $M$ accepts $w$. Moreover, the depth of recursion is $O\left(\lg 2^{d n^{k}}\right)=O\left(n^{k}\right)$. Each level increases the size of $\phi_{c_{1}, c_{2}, t}$ by $O\left(n^{k}\right)$. Hence $\left|\phi_{c_{\text {start }, ~}^{\text {accept },},^{d n^{k}}}\right| \in O\left(n^{2 k}\right)$.

## TQBF is PSPACE-Complete

- Do we really need quantified Boolean formulae?
- For $t>1$, consider

$$
\phi_{c_{1}, c_{2}, t}=\exists m\left[\phi_{c_{1}, m, \frac{t}{2}} \wedge \phi_{m, c_{2}, \frac{t}{2}}\right] .
$$

- Recall that $\phi_{c_{1}, c_{2}, 1}$ is an unquantified Boolean formula.
- We can construct an unquantified formula $\Phi_{\mathcal{C}_{1}, c_{2}, t}$ such that $\left\langle\phi_{c_{1}, c_{2}, t}\right\rangle \in T Q B F$ if and only if $\left\langle\Phi_{c_{1}, c_{2}, t}\right\rangle \in S A T$.
- Hence PSPACE $\subseteq N P$ ?!
- Note that $\left|\phi_{c_{1}, c_{2}, t}\right| \geq 2 \mid$
- Quantifiers allow us to "reuse" subformula!


## TQBF is PSPACE-Complete

- Do we really need quantified Boolean formulae?
- For $t>1$, consider

$$
\phi_{c_{1}, c_{2}, t}=\exists m\left[\phi_{c_{1}, m, \frac{t}{2}} \wedge \phi_{m, c_{2}, \frac{t}{2}}\right] .
$$

- Recall that $\phi_{c_{1}, c_{2}, 1}$ is an unquantified Boolean formula.
- We can construct an unquantified formula $\Phi_{\mathcal{C}_{1}, c_{2}, t}$ such that $\left\langle\phi_{c_{1}, c_{2}, t}\right\rangle \in T Q B F$ if and only if $\left\langle\Phi_{c_{1}, c_{2}, t}\right\rangle \in S A T$.
- Hence PSPACE $\subseteq N P$ ?!
- Note that $\left|\phi_{c_{1}, c_{2}, t}\right| \geq 2\left|\phi_{\mathcal{c}_{1}, c_{2}, \frac{t}{2}}\right| \cdot\left|\phi_{c_{1}, c_{2}, 2^{d n^{k}}}\right|$ is in fact of size $O\left(2^{n^{k}}\right)$.
- Quantifiers allow us to "reuse" subformula!


## Formula Games

- Let $\phi=\exists x_{1} \forall x_{2} \exists x_{3} \cdots \mathrm{Q} x_{k}[\psi]$ (Q denotes $\exists$ or $\forall$ ) be a quantified Boolean formula in prenex normal form.
- In a formula game, Player A and Player E take turns selecting values for $x_{1}, x_{2}, \ldots, x_{k}$.
- Player A selects values of $\forall$-quantified variables;
- Player E selects values of $\exists$-quantified variables.
- The order of play is determinied by $\phi$.
- At the end of play, all variables have their values.
- Player E wins if $\psi$ evaluates to 1 ;
- Player A wins if $\psi$ evaluates to 0 .
- A player has a winning strategy for the game associated with $\phi$ if the player wins when both sides play optimally.


## Formula Games

## Example 10

Let $\phi_{1}=\exists x_{1} \forall x_{2} \exists x_{3}\left[\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right)\right]$. Show Player E has a winning strategy.

## Proof.

Consider the following strategy for Player E
(1) Player E starts by selecting $x_{1}=1$.
(2) Player E selects the value of $x_{3}$ as follows.
(1) If Player A selects $x_{2}=0$, Player E selects $x_{3}=1$;
(2) If Player A selects $x_{2}=1$, Player E selects $x_{3}=0$.

It is easy to verify that Player E always wins.

- Consider

FORMULAGAME $=\{\langle\phi\rangle:$ Player E has a winning strategy in the formula game associated with $\phi\}$.

## FORMULAGAME is PSPACE-Complete

Theorem 11
FORMULAGAME is PSPACE-complete.

## Proof.

The formula $\phi=\exists x_{1} \forall x_{2} \exists x_{3} \cdots[\psi]$ is true if there is a value of $x_{1}$ such that no matter what value of $x_{2}$ is $\exists x_{3} \cdots[\psi]$ is true. This is exactly when Player E has a winning strategy.

## Generalized Geography

- In generalized geography, a directed graph $G$ with a designated start node $b$ (a path of length 0 ) are given.
- Start by Player I. Player I and II takes turns to move.
- At each move, a player selects a neighboring node that form a simple path in the graph.
- The first player fails to extend the path loses the game.
- Consider
$G G=\{\langle G, b\rangle$ : Player I has a winning strategy for the generalize geography game played on $G$ starting at node $b\}$


Player I wins by selecting node 3

## GG is PSPACE-Complete

## Theorem 12

GG is PSPACE-complete.

## Proof.

We first show $G G \in P S P A C E$. Consider $M=$ "On input $\langle G, b\rangle$ where $G$ is a directed graph and $b$ a node of $G$ :
(1) If $b$ has outdegree 0 , reject.
(2) Remove $b$ and all connected edges to obtain $G^{\prime}$.
(3) For each nodes $b_{1}, b_{2}, \ldots, b_{k}$ pointed by $b$ in $G$, call $M$ on $\left\langle G^{\prime}, b_{i}\right\rangle$ recursively.
(4) If $M$ accepts $\left\langle G^{\prime}, b_{i}\right\rangle$ for all $i$, reject. Otherwise, accept."

The depth of recursion is the number of nodes in $G$. At each level, $M$ stores a node. Hence $M$ runs in space $O(n)$.
We now give a polynomial time reduction of TQBF to GG. Let $\phi=\exists x_{1} \forall x_{2} \exists x_{3} \cdots \exists x_{k}[\psi]$ be a quantified Boolean formula where $\psi$ is in 3CNF. (If $\phi$ is not alternating or ends with an $\exists$-quantifier, add dummy variables.)

## GG is PSPACE-Complete



## GG is PSPACE-Complete

## Proof.

We construct $G$ as follows.

- For each variable $x_{i}$, a variable gadget consists of a diamond. The left branch denotes the value of $x_{i}$ is 1 ; the right branch denotes the value 0 .
- A special node c points to every clause gadget.
- For each clause, a clause gadget has four nodes. A node $c_{j}$ points to three nodes for literals. Each literal node in turn points to a node in variable gadgets that makes the literal true.
- The designated start node $b$ is the top node in the variable gadget for $x_{1}$. The bottom node of the variable gadget for $x_{k}$ points to the special node $c$.

The game $G$ starts by selecting values for variables $x_{1}, x_{2}, \ldots, x_{k}$. Player I selects values for $x_{1}, x_{3}, \ldots, x_{2 h+1}, \ldots x_{k}$; Player II selects values for $x_{2}, x_{4}, \ldots, x_{2 h}, \ldots, x_{k-1}$. Then Player II is forced to move to the special node $c$.
At the special node $c$, Player II tries to select a clause. If a clause is satisfied, all its literals are blocked by value nodes in variable gadgets. Player II will lose. If a clause is falsified, Player II can move to a value node in variable gadgets and win. Hence Player II tries to select a falsified clause. Hence $\phi$ is true if and only if Player I has a winning strategy in $G$.

## TM's with Sublinear Space



Figure: Schematics for TM's using Sublinear Space

- For sublinear space, we consider TM's with two tapes.
- a read-only input tape containing the input string; and
- a read-write work tape.
- The input head cannot move outside the portion of the tape containing the input.
- The cells scanned on the work tape contribute to the space complexity.


## Space Complexity Classes $L$ and $N L$

## Definition 13

$\underline{L}(=\operatorname{SPACE}(\log n))$ is the class of languages decidable by a TM in logarithmic space.
NL $(=\operatorname{NSPACE}(\log n))$ is the class of languages decidable by an NTM in logarithmic space.

Example 14
$A=\left\{0^{k} 1^{k}: k \geq 0\right\} \in L$.
Proof.
Consider
$M=$ "On input $w$ :
(1) Check if $w$ is of the form $0^{*} 1^{*}$. If not, reject.
(2) Count the number of 0's and 1's on the work tape.
(3) If they are equal, accept; otherwise, reject."

## PATH is in NL

## Example 15

Recall PATH $=\{\langle G, s, t\rangle: G$ is a directed graph with a path from $s$ to $t\}$. Show PATH $\in$ NL.

## Proof.

Consider
$N=$ "On input $\langle G, s, t\rangle$ where $G$ is a directed graph with nodes $s$ and $t$ :
(1) Repeat $m$ times ( $m$ is the number of nodes in $G$ )
(1) Nondeterministically select the next node for the path. If the next node is $t$, accept.
(2) Reject.
$N$ only needs to store the current node on the work tape. Hence $N$ runs in space $O(\lg n)$.

- We do not know if PATH $\in L$.


## Configurations of TM's with Sublinear Space

## Definition 16

Let $M$ be a TM with a separate read-only input tape and $w$ an input string. A configuration of $M$ on $w$ consists of a state, the contents of work tape, and locations of the two tape heads.

- Note that the input $w$ is no longer a part of the configuration.
- If $M$ runs in space $f(n)$ and $|w|=n$, the number of configurations of $M$ on $w$ is $n 2^{O(f(n))}$.
- Suppose $M$ has $q$ states and $g$ tape symbols. The number of configurations is at most $q n f(n) g^{f(n)} \in n 2^{O(f(n))}$.
- Note that when $f(n) \geq \lg n, n 2^{O(f(n))}=2^{O(f(n))}$.


## Savitch's Theorem Revisited

- Recall that we assume $f(n) \geq n$ in the theorem.
- We can in fact relax the assumption to $f(n) \geq \lg n$.
- The proof is identical except that we are simulating an NTM $N$ with a read-only input tape.
- When $f(n) \geq \lg n$, the depth of recursion is $\lg \left(n 2^{O(f(n))}\right)=$ $\lg n+O(f(n))=O(f(n))$. At each level, $\lg \left(n 2^{O(f(n))}\right)=O(f(n))$ space is needed.
- Hence $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right)$ when $f(n) \geq \lg n$.


## Log Space Reducibility

Definition 17
A log space transducer is a TM with a read-only input tape, a write-only output tape, and a read-write work tape. The work tape may contain $O(\lg n)$ symbols.

## Definition 18

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a log space computable function if there is a log space transducer that halts with $f(w)$ in its work tape on every input $w$.

## Definition 19

A language $A$ is $\log$ space reducible to a language $B$ (written $A \leq_{L} B$ ) if there is a $\log$ space computable function $f$ such that $w \in A$ if and only if $f(w) \in B$ for every $w$.

## Properties about Log Space Reducibility

## Theorem 20

If $A \leq_{L} B$ and $B \in L, A \in L$.

## Proof.

Let a TM $M_{B}$ decide $B$ in space $O(\lg n)$. Consider $M_{A}=$ "On input $w$ :
(1) Compute the first symbol of $f(w)$.
(2) Simulate $M_{B}$ on the current symbol.

- If $M_{B}$ ever changes its input head, compute the symbol of $f(w)$ at the new location.

More precisely, restart the computation of $f(w)$ and ignore all symbols of $f(w)$ except the one needed by $M_{B}$.
(9) If $M_{B}$ accepts, accepts; otherwise, reject.

- Can we write down $f(w)$ on $M_{B}{ }^{\prime}$ s work tape?


## Properties about Log Space Reducibility

## Theorem 20

If $A \leq_{L} B$ and $B \in L, A \in L$.

## Proof.

Let a TM $M_{B}$ decide $B$ in space $O(\lg n)$. Consider $M_{A}=$ "On input $w$ :
(1) Compute the first symbol of $f(w)$.
(2) Simulate $M_{B}$ on the current symbol.

- If $M_{B}$ ever changes its input head, compute the symbol of $f(w)$ at the new location.

More precisely, restart the computation of $f(w)$ and ignore all symbols of $f(w)$ except the one needed by $M_{B}$.
(9) If $M_{B}$ accepts, accepts; otherwise, reject.

- Can we write down $f(w)$ on $M_{B}{ }^{\prime}$ s work tape?
- No. $f(w)$ may need more than logarithmic space.


## NL-Completeness

## Definition 21

A language $B$ is NL-complete if

- $B \in N L$; and
- $A \leq_{L} B$ for every $A \in N L$.
- Note that we require $A \leq_{L} B$ instead of $A \leq_{P} B$.
- We will show $N L \subseteq P$ (Corollary 24 ).
- Hence every two problems in $N L$ (except $\emptyset$ and $\Sigma^{*}$ ) are polynomial time reducible to each other (why?).


## Corollary 22 <br> If any $N L$-complete language is in $L$, then $L=N L$.

## NL-Completeness

## Theorem 23

PATH is NL-complete.

## Proof.

Let an NTM $M$ decide $A$ in $O(\lg n)$ space. We assume $M$ has a unique accepting configuration. Given $w$, we construct $\langle G, s, t\rangle$ in $\log$ space such that $M$ accepts $w$ if and only if $G$ has a path from $s$ to $t$.
Nodes of $G$ are configurations of $M$ on $w$. For configurations $c_{1}$ and $c_{2}$, the edge $\left(c_{1}, c_{2}\right)$ is in $G$ if $c_{1}$ yields $c_{2}$ in $M$. s and $t$ are the start and accepting configurations of $M$ on $w$ respectively.
Clearly, $M$ accepts $w$ if and only if $G$ has a path from $s$ to $t$. It remains to show that $G$ can be computed by a log space transducer. Observe that a configuration of $M$ on $w$ can be represented in $c \lg n$ space for some $c$. The transducer simply enumerates all string of legnth $c \lg n$ and outputs those that are configurations of $M$ on $w$. The edges $\left(c_{1}, c_{2}\right)$ 's are computed similarly. The transducer only needs to read the tape contents under the head locations in $c_{1}$ to decide whether $c_{1}$ yields $c_{2}$ in $M$.

## $N L \subseteq P$

## Corollary 24

$N L \subseteq P$.

## Proof.

A TM using space $f(n)$ has at most $n 2^{O(f(n))}$ configurations and hence runs in time $n 2^{O(f(n))}$. A log space transducer therefore runs in polynomial time. Hence any problem in $N L$ is polynomial time reducible to $P A T H$. The result follows by $P A T H \in P$.

- The polynomial time reduction in the proof of Theorem 9 can be computed in log space.
- Hence TQBF is PSPACE-complete with respect to log space reducibility.


## $N L=c o N L$



## Theorem 25 (Immerman-Szelepcsényi) <br> $N L=c o N L$.

## Proof.

We will give an NTM $M$ deciding $\overline{P A T H}$ in space $O(\lg n)$. Hence $\overline{P A T H} \in N L$. Recall that PATH is NL-complete. For any $A \in N L$, we have $A \leq_{L}$ PATH. Hence $\bar{A} \leq_{L} \overline{P A T H}$. Since $\overline{P A T H} \in N L, \bar{A} \in N L$. That is, $\overline{\bar{A}}=A \in c o N L$. We have $N L \subseteq c o N L$. For any $B \in c o N L$, we have $\bar{B} \in N L$. Hence $\bar{B} \leq_{L}$ PATH. Thus $B=\overline{\bar{B}} \leq_{L} \overline{P A T H}$. Since $\overline{P A T H} \in N L$, we have $B \in N L$. We have $c o N L \subseteq N L$.

## $N L=c o N L$

## Proof (cont'd).

```
Input: On }\langleG,s,t
co = 1;
// G has m nodes
foreach }i=0,\ldots,m-1 d
```

    \(c_{i+1}=1 ; \quad / / c_{i+1}\) counts the nodes reached from \(s\) in \(\leq i+1\) steps
    foreach node \(v \neq s\) in \(G\) do
        \(d=\overline{0 ;} \quad / / d\) recounts the nodes reached from \(s\) in \(\leq i\) steps
        foreach node \(u\) in \(G\) do
                        Nondeterministically continue;
                            Nondeterministically follow a path of length \(\leq i\) from \(s\);
            Reject if the path does not end at \(u\);
            \(d=d+1\);
            if \(\frac{(u, v) \text { is an edge in } G}{c_{i+1}=c_{i+1}+1 ;}\) then
                        break;
        end
            if \(d \neq c_{i}\) then Reject;
        ; // check if the result is correct
    end
    end

## $N L=c o N L$

## Proof (cont'd).

```
d=0;
    // d recounts the nodes reached from s
foreach node u in G do
    Nondeterministically continue;
    Nondeterministically follow a path of length }\leqm\mathrm{ from s;
    Reject if the path does not end at }u\mathrm{ ;
    if }\underline{u=t}\mathrm{ then Reject;
    ;
    // do not count t
    d=d+1;
end
if d\not=\mp@subsup{c}{m}{}}\mathrm{ then Reject;
```

else Accept;
;

The NTM $M$ counts the nodes reached from $s$ in the first phrase. The variable $c_{i}$ is the number of nodes reached from $s$ in $\leq i$ steps. Initially, $c_{0}=1$. To compute $c_{i+1}$ from $c_{i}$, $M$ goes through each node $v \neq s$ in $G$. For each $v, M$ tries to find all nodes reached from $s$ in $\leq i$ steps. For each such node $u, M$ increments $d$. It also increments $c_{i+1}$ if $u$ points to $v$. If $d=c_{i}, M$ has found all node reached from $s$ in $\leq i$ steps. Hence $c_{i+1}$ is correct. M proceeds to compute $c_{i+2}$.
At the second phrase, $M$ counts nodes reached from $s$ but excluding $t$. If $s$ reaches the

## $L, N L, P$, and PSPACE

- The relationship between different complexity classes now becomes

$$
L \subseteq N L=c o N L \subseteq P \subseteq N P \subseteq P S P A C E=N P S P A C E \subseteq E X P T I M E
$$

- We will prove NL $\subsetneq P S P A C E$ in the next chapter.
- Hence at least on inclusion is propcer.
- But we do not know which one.

