Theory of Computing Space Complexity

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Ming-Hsien Tsai (IM@NTU)

Time Complexity

Spring 2019 1 / 35

Definition 1

Let *M* be a TM that halts on all inputs. The <u>space complexity</u> of *M* is $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of tape cells that *M* scans on any input of length *n*.

If the space complexity of *M* is f(n), we say *M* <u>runs in space</u> f(n).

Definition 2

If *N* is an NTM wherein all branches of its computation halts on all inputs. The <u>space complexity</u> of *N* is $f : \mathbb{N} \to \mathbb{N}$ where f(n) is the maximum number of tape cells that *N* scans on any branch of its computation for any input of length *n*. If the space complexity of *N* is f(n), we say *N* runs in space f(n).

イロト イポト イヨト イヨト

Definition 3

Let $f : \mathbb{N} \to \mathbb{R}^+$. The space complexity classes, $\underline{SPACE(f(n))}$ and $\underline{NSPACE(f(n))}$, are

 $SPACE(f(n)) = \{L : L \text{ is decided by an } O(f(n)) \text{ space TM} \}$ $NSPACE(f(n)) = \{L : L \text{ is decided by an } O(f(n)) \text{ space NTM} \}$

イロト イポト イヨト イヨト

Example 4

Give a TM that decides *SAT* in space O(n).

Proof.

Consider

 $M_1 =$ "On input $\langle \phi \rangle$ where ϕ is a Boolean formula:

- For each truth assignment to x_1, x_2, \ldots, x_m of ϕ , do
 - Evaluate ϕ on the truth assignment.
- 2 If ϕ ever eavluates to 1, accept; otherwise, reject."

 M_1 runs in space O(n) since it only needs to store the current truth assignment for *m* variables and $m \in O(n)$.

< ロト < 同

Universality of NFA's

- Consider $ALL_{NFA} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}.$
 - ► *ALL*_{NFA} is not known to be in *NP* or in *coNP*.

Example 5

Show $ALL_{NFA} \in coNSPACE(n)$.

Proof.

Consider

- N = "On input $\langle A \rangle$ where *A* is an NFA with *q* states:
 - Place a marker on the start state of A.
 - 2 Repeat 2^q times:
 - Nondeterministically select an input symbol *a* and simulate *A* on *a* by changing (or adding) positions of the markers on *A*'s states.
 - If a marker is ever place on an accept state, reject; otherwise, accept."

Observe that if *A* rejects any string, it rejects a string of length at most 2^q . Hence *N* decides \overline{ALL}_{NFA} . Moreover, *N* only needs to store locations of markers and the loop counter. *N* runs in space O(n).

Ming-Hsien Tsai (IM@NTU)

Savitch's Theorem

Theorem 6 (Savitch)

For $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) \ge n$, $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.

Proof.

Let *N* be an NTM deciding *A* in space f(n). Assume *N* has a unique accepting configuration c_{accept} (how?). We construct a TM *M* deciding *A* in space $O(f^2(n))$. Let *w* be an input to *N*, c_1, c_2 configurations of *N* on *w*, and $t \in \mathbb{N}$. Consider *CANYIELD* = "On input c_1, c_2 , and *t*:

- If t = 1, test whether $c_1 = c_2$, or c_1 yields c_2 in *N*. If either succeeds, accept; otherwise, reject.
- 2 If t > 1, for each configuration c_m of N on w do
 - **1** Run *CANYIELD* $(c_1, c_m, \frac{t}{2})$.
 - **2** Run *CANYIELD* $(c_m, c_2, \frac{t}{2})$.
 - If both accept, accept.
- 8 Reject."

Observe that *CANYIELD* needs to store the step number, c_1 , c_2 , and t for recursion.

Proof (cont'd).

We select a constant *d* so that *N* has at most $2^{df(n)}$ configurations where n = |w|. M = "On input *w*:

• Run CANYIELD($c_{\text{start}}, c_{\text{accept}}, 2^{df(n)}$)."

Since $t = 2^{df(n)}$, the depth of recusion is $O(\lg 2^{df(n)}) = O(f(n))$. Moreover, *CANYIELD* can store its step number, c_1, c_2, t in space O(f(n)). Thus *M* runs in space $O(f(n) \times f(n)) = O(f^2(n))$.

A technical problem for *M* is to compute f(n) in space O(f(n)). This can be avoided as follows. Instead of computing f(n), *M* tries f(n) = 1, 2, 3, ... For each f(n) = i, *M* calls *CANYIELD* as before but also checks if *N* reaches a configuration of length i + 1 from c_{start} . If *N* reaches c_{accept} , *M* accepts as before. If *N* reaches a configuration of length i + 1 from i + 1 but fails to reach c_{accept} , *M* continues with f(n) = i + 1. Otherwise, all configurations of *N* have length $\leq f(n)$. *N* still fails to reach c_{accept} in $2^{df(n)}$ time. Hence *M* rejects.

ヘロト 人間 とくほ とくほとう

The Class *PSPACE*

Definition 7

PSPACE is the class of languages decidable by TM's in polynomial space. That is,

$$PSPACE = \bigcup_{k} SPACE(n^{k}).$$

- Consider the class of langauges decidable by NTM's in polynomial space $NPSPACE = \bigcup_k NSPACE(n^k)$.
- By Savitch's Theorem, $NSPACE(n^k) \subseteq SPACE(n^{2k})$. Clearly, $SPACE(n^k) \subseteq NSPACE(n^k)$. Hence NPSPACE = PSPACE.
- Recall $SAT \in SPACE(n)$ and $ALL_{NFA} \in coNSPACE(n)$. By Savitch's Theorem, $\overline{ALL_{NFA}} \in NSPACE(n) \subseteq SPACE(n^2)$. Hence $ALL_{NFA} \in SPACE(n^2)$ (why?). $SAT, ALL_{NFA} \in PSPACE$.

P, NP, PSPACE, and EXPTIME

- $P \subseteq PSPACE$
 - A TM running in time t(n) uses space t(n) (provided $t(n) \ge n$).
- Similarly, $NP \subseteq NPSPACE$ and thus $NP \subseteq PSPACE$.
- $PSPACE \subseteq EXPTIME = \cup_k TIME(2^{n^k})$
 - A TM running in space f(n) has at most f(n)2^{O(f(n))} different configurations (provided f(n) ≥ n).
 - * A configuration contains the current state, the location of tape head, and the tape contents.
- In summary, $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$.
 - We will show $P \neq EXPTIME$.

Definition 8

A language *B* is *PSPACE*-complete if it satisfies

- $B \in PSPACE$; and
- $A \leq_P B$ for every $A \in PSPACE$.

If *B* only satisfies the second condition, we say it is *PSPACE*-hard.

- We do not define "polynomial space reduction" nor use it.
- Intuitively, a complete problem is most difficult in the class.
- If we can solve a complete problem, we can solve all problems in the same class easily.
- Polynomial space reduction is not easy at all.
 - Recall $SAT \in SPACE(n)$.

- Recall the <u>universal quantifier</u> \forall and the <u>existential quantifier</u> \exists .
- When we use quantifiers, we should specify a universe.
 - ► $\forall x \exists y [x < y \land y < x + 1]$ is false if \mathbb{Z} is the universe.
 - ► $\forall x \exists y [x < y \land y < x + 1]$ is true if \mathbb{Q} is the universe.
- A <u>quantified Boolean formula</u> is a quantified Boolean formula over the universe **B**.
- Any formula with quantifiers can be converted to a formula begins with quantifiers.
 - $\forall x[x \ge 0 \implies \exists y[y^2 = x]] \text{ is equivalent to } \forall x \exists y[x \ge 0 \implies y^2 = x].$
 - This is called prenex normal form.
- We always consider formulae in prenex normal form.
- If all variables are quantified in a formula, we say the formula is <u>fully quantified</u> (or a sentence).
- Consider

 $TQBF = \{\langle \phi \rangle : \phi \text{ is a true fully quantified Boolean formula} \}.$

TQBF is PSPACE-Complete

Theorem 9

TQBF is PSPACE-complete.

Proof.

We first show $TQBF \in PSPACE$. Consider

- T= "On input $\langle \phi \rangle$ where ϕ is a fully quantified Boolean formula:
 - If φ has no quantifier, it is a Boolean formula without variables. If φ evaluates to 1, accept; otherwise, reject.
 - ② If ϕ is $\exists x\psi$, call *T* recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If *T* accepts either, accept; otherwise, reject.
 - **③** If *φ* is $\forall x \psi$, call *T* recursively on $\psi[x \mapsto 0]$ and $\psi[x \mapsto 1]$. If *T* accepts both, accept; otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the value of one variable. Hence T runs in space O(n).

< □ > < □ > < □ > < □ > < □ > < □

TQBF is PSPACE-Complete

Proof (cont'd).

Let *M* be a TM deciding *A* in space n^k . For any string *w*, we construct a quantified Boolean formula ϕ such that *M* accepts *w* if and only if ϕ is true. More precisely, let c_1, c_2 be collections of variables representing two configurations, and t > 0, we construct a formula $\phi_{c_1,c_2,t}$ such that $\phi_{c_1,c_2,t} \wedge c_1 = c_1 \wedge c_2 = c_2$ is true if and only if *M* can go from the configuration c_1 to the configuration c_2 in $\leq t$ steps. To construct $\phi_{c_1,c_2,1}$, we check if $c_1 = c_2$, or the configuration represented by c_1 yields the configuration represented by c_2 in *M*. We use the technique in the proof of Cook-Levin Theorem. That is, we construct a Boolean formula stating that all windows on the rows c_1, c_2 are valid. Observe that $|\phi_{c_1,c_2,1}| \in O(n^k)$. For t > 1, let

$$\phi_{c_1,c_2,t} = \exists m \forall c_3 \forall c_4 \left[((c_3 = c_1 \land c_4 = m) \lor (c_3 = m \land c_4 = c_2)) \implies \phi_{c_3,c_4,\frac{t}{2}} \right]$$

Note that $|\phi_{c_1,c_2,t}| = \gamma n^k + |\phi_{c_3,c_4,\frac{t}{2}}|$ for some constant γ .

Assume *M* has a unique accepting configuration c_{accept} . Choose a constant *d* so that *M* has at most 2^{dn^k} configurations on *w*. Then $\phi_{c_{\text{start}}, c_{\text{accept}}, 2^{dn^k}}$ is true if and only if *M* accepts *w*. Moreover, the depth of recursion is $O(\lg 2^{dn^k}) = O(n^k)$. Each level increases the size of $\phi_{c_1,c_2,t}$ by $O(n^k)$. Hence $|\phi_{c_{\text{start}},c_{\text{accept}}, 2^{dn^k}}| \in O(n^{2k})$.

- Do we really need quantified Boolean formulae?
- For t > 1, consider

$$\phi_{c_1, c_2, t} = \exists m[\phi_{c_1, m, \frac{t}{2}} \land \phi_{m, c_2, \frac{t}{2}}].$$

- Recall that $\phi_{c_1,c_2,1}$ is an unquantified Boolean formula.
- We can construct an unquantified formula $\Phi_{c_1,c_2,t}$ such that $\langle \phi_{c_1,c_2,t} \rangle \in TQBF$ if and only if $\langle \Phi_{c_1,c_2,t} \rangle \in SAT$.
- Hence $PSPACE \subseteq NP?!$
- Note that $|\phi_{c_1,c_2,t}| \ge 2|\phi_{c_1,c_2,\frac{t}{2}}|$. $|\phi_{c_1,c_2,2^{dnk}}|$ is in fact of size $O(2^{n^k})$.
- Quantifiers allow us to "reuse" subformula!

- Do we really need quantified Boolean formulae?
- For t > 1, consider

$$\phi_{c_1,c_2,t} = \exists m[\phi_{c_1,m,\frac{t}{2}} \land \phi_{m,c_2,\frac{t}{2}}].$$

- Recall that $\phi_{c_1,c_2,1}$ is an unquantified Boolean formula.
- We can construct an unquantified formula $\Phi_{c_1,c_2,t}$ such that $\langle \phi_{c_1,c_2,t} \rangle \in TQBF$ if and only if $\langle \Phi_{c_1,c_2,t} \rangle \in SAT$.
- Hence $PSPACE \subseteq NP$?!
- Note that $|\phi_{c_1,c_2,t}| \ge 2|\phi_{c_1,c_2,\frac{t}{2}}|$. $|\phi_{c_1,c_2,2^{dnk}}|$ is in fact of size $O(2^{n^k})$.
- Quantifiers allow us to "reuse" subformula!

- Let $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots Qx_k[\psi]$ (Q denotes \exists or \forall) be a quantified Boolean formula in prenex normal form.
- In a formula game, Player A and Player E take turns selecting values for x_1, x_2, \ldots, x_k .
 - ▶ Player A selects values of ∀-quantified variables;
 - ▶ Player E selects values of ∃-quantified variables.
- The order of play is determined by ϕ .
- At the end of play, all variables have their values.
 - Player E wins if ψ evaluates to 1;
 - Player A wins if ψ evaluates to 0.
- A player has a <u>winning strategy</u> for the game associated with *φ* if the player wins when both sides play optimally.

> < 三 > < 三 >

< 口 > < 🗇

Formula Games

Example 10

Let $\phi_1 = \exists x_1 \forall x_2 \exists x_3 [(x_1 \lor x_2) \land (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3})]$. Show Player E has a winning strategy.

Proof.

Consider the following strategy for Player E

• Player E starts by selecting $x_1 = 1$.

2 Player E selects the value of x_3 as follows.

- If Player A selects $x_2 = 0$, Player E selects $x_3 = 1$;
- **2** If Player A selects $x_2 = 1$, Player E selects $x_3 = 0$.

It is easy to verify that Player E always wins.

Consider

 $FORMULAGAME = \{ \langle \phi \rangle : Player E has a winning strategy in the formula game associated with <math>\phi \}.$

Theorem 11 FORMULAGAME is PSPACE-complete.

Proof.

The formula $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots [\psi]$ is true if there is a value of x_1 such that no matter what value of x_2 is $\exists x_3 \cdots [\psi]$ is true. This is exactly when Player E has a winning strategy.

Generalized Geography

- In <u>generalized geography</u>, a directed graph *G* with a designated start node *b* (a path of length 0) are given.
- Start by Player I. Player I and II takes turns to move.
 - At each move, a player selects a neighboring node that form a simple path in the graph.
- The first player fails to extend the path loses the game.
- Consider

 $GG = \{ \langle G, b \rangle$: Player I has a winning strategy for the generalize geography game played on *G* starting at node *b* $\}$

Player I wins by selecting node 3

GG is PSPACE-Complete

Theorem 12

GG is PSPACE-complete.

Proof.

We first show $GG \in PSPACE$. Consider

M = "On input $\langle G, b \rangle$ where *G* is a directed graph and *b* a node of *G*:

- 1 If *b* has outdegree 0, reject.
- 2 Remove b and all connected edges to obtain G'.
- So For each nodes b_1, b_2, \ldots, b_k pointed by b in G, call M on $\langle G', b_i \rangle$ recursively.

If *M* accepts $\langle G', b_i \rangle$ for all *i*, reject. Otherwise, accept."

The depth of recursion is the number of nodes in *G*. At each level, *M* stores a node. Hence *M* runs in space O(n).

We now give a polynomial time reduction of *TQBF* to *GG*. Let $\phi = \exists x_1 \forall x_2 \exists x_3 \cdots \exists x_k[\psi]$ be a quantified Boolean formula where ψ is in 3CNF. (If ϕ is not alternating or ends with an \exists -quantifier, add dummy variables.)

イロト イポト イヨト イヨト 一日

GG is PSPACE-Complete

GG is PSPACE-Complete

Proof.

We construct *G* as follows.

- For each variable *x_i*, a variable gadget consists of a diamond. The left branch denotes the value of *x_i* is 1; the right branch denotes the value 0.
- A special node *c* points to every clause gadget.
- For each clause, a clause gadget has four nodes. A node *c_j* points to three nodes for literals. Each literal node in turn points to a node in variable gadgets that makes the literal true.
- The designated start node *b* is the top node in the variable gadget for *x*₁. The bottom node of the variable gadget for *x*_k points to the special node *c*.

The game *G* starts by selecting values for variables $x_1, x_2, ..., x_k$. Player I selects values for $x_1, x_3, ..., x_{2h+1}, ..., x_k$; Player II selects values for $x_2, x_4, ..., x_{2h}, ..., x_{k-1}$. Then Player II is forced to move to the special node *c*.

At the special node *c*, Player II tries to select a clause. If a clause is satisfied, all its literals are blocked by value nodes in variable gadgets. Player II will lose. If a clause is falsified, Player II can move to a value node in variable gadgets and win. Hence Player II tries to select a falsified clause. Hence ϕ is true if and only if Player I has a winning strategy in *G*.

Ming-Hsien Tsai (IM@NTU)

TM's with Sublinear Space

Figure: Schematics for TM's using Sublinear Space

- For sublinear space, we consider TM's with two tapes.
 - a read-only input tape containing the input string; and
 - a read-write work tape.
- The input head cannot move outside the portion of the tape containing the input.
- The cells scanned on the work tape contribute to the space complexity.

Space Complexity Classes L and NL

Definition 13

 $L (= SPACE(\log n))$ is the class of languages decidable by a TM in logarithmic space.

 \underline{NL} (= $NSPACE(\log n)$) is the class of languages decidable by an NTM in logarithmic space.

Example 14

$$A = \{0^k 1^k : k \ge 0\} \in L.$$

Proof.

Consider

M = "On input w:

- Check if *w* is of the form 0*1*. If not, reject.
- 2 Count the number of 0's and 1's on the work tape.
- S If they are equal, accept; otherwise, reject."

Time Complexity

PATH is in NL

Example 15

Recall $PATH = \{ \langle G, s, t \rangle : G \text{ is a directed graph with a path from } s \text{ to } t \}.$ Show $PATH \in NL$.

Proof.

Consider

N = "On input $\langle G, s, t \rangle$ where G is a directed graph with nodes s and t:

Repeat *m* times (*m* is the number of nodes in *G*)

- Nondeterministically select the next node for the path. If the next node is *t*, accept.
- 2 Reject.

N only needs to store the current node on the work tape. Hence *N* runs in space $O(\lg n)$.

• We do not know if $PATH \in L$.

< □ > < □ > < □ > < □ > <

Definition 16

Let M be a TM with a separate read-only input tape and w an input string. A <u>configuration</u> of M on w consists of a state, the contents of work tape, and locations of the two tape heads.

- Note that the input *w* is no longer a part of the configuration.
- If *M* runs in space f(n) and |w| = n, the number of configurations of *M* on *w* is $n2^{O(f(n))}$.
 - Suppose *M* has *q* states and *g* tape symbols. The number of configurations is at most *qnf*(*n*)*g*^{*f*(*n*)} ∈ *n*2^{*O*(*f*(*n*))}.

• Note that when $f(n) \ge \lg n, n2^{O(f(n))} = 2^{O(f(n))}$.

Savitch's Theorem Revisited

- Recall that we assume $f(n) \ge n$ in the theorem.
- We can in fact relax the assumption to $f(n) \ge \lg n$.
- The proof is identical except that we are simulating an NTM *N* with a read-only input tape.
- When $f(n) \ge \lg n$, the depth of recursion is $\lg(n2^{O(f(n))}) = \lg n + O(f(n)) = O(f(n))$. At each level, $\lg(n2^{O(f(n))}) = O(f(n))$ space is needed.
- Hence $NSPACE(f(n)) \subseteq SPACE(f^2(n))$ when $f(n) \ge \lg n$.

Definition 17

A log space transducer is a TM with a read-only input tape, a write-only output tape, and a read-write work tape. The work tape may contain $O(\lg n)$ symbols.

Definition 18

 $f: \Sigma^* \to \Sigma^*$ is a log space computable function if there is a log space transducer that halts with f(w) in its work tape on every input w.

Definition 19

A language *A* is log space reducible to a language *B* (written $A \leq_L B$) if there is a log space computable function *f* such that $w \in A$ if and only if $f(w) \in B$ for every *w*.

< □ > < □ > < □ > < □ > < □ > < □

Properties about Log Space Reducibility

Theorem 20

If $A \leq_L B$ and $B \in L$, $A \in L$.

Proof.

Let a TM M_B decide *B* in space $O(\lg n)$. Consider

 $M_A =$ "On input w:

- Compute the first symbol of f(w).
- **2** Simulate M_B on the current symbol.
- If M_B ever changes its input head, compute the symbol of f(w) at the new location.
 - More precisely, restart the computation of f(w) and ignore all symbols of f(w) except the one needed by M_B .
- If M_B accepts, accepts; otherwise, reject.
- Can we write down f(w) on M_B's work tape?
 No. f(w) may need more than logarithmic space.

Properties about Log Space Reducibility

Theorem 20

If $A \leq_L B$ and $B \in L$, $A \in L$.

Proof.

Let a TM M_B decide *B* in space $O(\lg n)$. Consider

 $M_A =$ "On input w:

- Compute the first symbol of f(w).
- **2** Simulate M_B on the current symbol.
- If M_B ever changes its input head, compute the symbol of f(w) at the new location.
 - More precisely, restart the computation of f(w) and ignore all symbols of f(w) except the one needed by M_B .
- If M_B accepts, accepts; otherwise, reject.
- Can we write down f(w) on M_B 's work tape?
 - ► No. f(w) may need more than logarithmic space.

Ming-Hsien Tsai (IM@NTU)

Time Complexity

Spring 2019

NL-Completeness

Definition 21

A language *B* is <u>NL-complete</u> if

- $B \in NL$; and
- $A \leq_L B$ for every $A \in NL$.
- Note that we require $A \leq_L B$ instead of $A \leq_P B$.
- We will show $NL \subseteq P$ (Corollary 24).
- Hence every two problems in *NL* (except Ø and Σ*) are polynomial time reducible to each other (why?).

Corollary 22

If any NL-complete language is in L*, then* L = NL*.*

Theorem 23

PATH is NL-complete.

Proof.

Let an NTM *M* decide *A* in $O(\lg n)$ space. We assume *M* has a unique accepting configuration. Given *w*, we construct (G, s, t) in log space such that *M* accepts *w* if and only if *G* has a path from *s* to *t*.

Nodes of *G* are configurations of *M* on *w*. For configurations c_1 and c_2 , the edge (c_1, c_2) is in *G* if c_1 yields c_2 in *M*. *s* and *t* are the start and accepting configurations of *M* on *w* respectively.

Clearly, *M* accepts *w* if and only if *G* has a path from *s* to *t*. It remains to show that *G* can be computed by a log space transducer. Observe that a configuration of *M* on *w* can be represented in $c \lg n$ space for some *c*. The transducer simply enumerates all string of legnth $c \lg n$ and outputs those that are configurations of *M* on *w*. The edges (c_1, c_2) 's are computed similarly. The transducer only needs to read the tape contents under the head locations in c_1 to decide whether c_1 yields c_2 in *M*.

イロト イ理ト イヨト イヨト

$NL \subseteq P$

Corollary 24

 $NL \subseteq P.$

Proof.

A TM using space f(n) has at most $n2^{O(f(n))}$ configurations and hence runs in time $n2^{O(f(n))}$. A log space transducer therefore runs in polynomial time. Hence any problem in *NL* is polynomial time reducible to *PATH*. The result follows by *PATH* \in *P*.

- The polynomial time reduction in the proof of Theorem 9 can be computed in log space.
- Hence *TQBF* is *PSPACE*-complete with respect to log space reducibility.

イロト イ理ト イヨト イヨト

Theorem 25 (Immerman–Szelepcsényi) NL = coNL.

Proof.

We will give an NTM *M* deciding \overline{PATH} in space $O(\lg n)$. Hence $\overline{PATH} \in NL$. Recall that PATH is *NL*-complete. For any $A \in NL$, we have $A \leq_L PATH$. Hence $\overline{A} \leq_L \overline{PATH}$. Since $\overline{PATH} \in NL$, $\overline{A} \in NL$. That is, $\overline{\overline{A}} = A \in coNL$. We have $NL \subseteq coNL$. For any $B \in coNL$, we have $\overline{B} \in NL$. Hence $\overline{B} \leq_L PATH$. Thus $B = \overline{\overline{B}} \leq_L \overline{PATH}$. Since $\overline{PATH} \in NL$, we have $B \in NL$. We have $coNL \subseteq NL$.

NL = coNL

Proof (cont'd).

```
Input: On \langle G, s, t \rangle
c_0 = 1;
// G has m nodes
foreach i = 0, ..., m - 1 do
    c_{i+1} = 1; // c_{i+1} counts the nodes reached from s in \leq i+1 steps
    foreach node v \neq s in G do
        d=0; // d recounts the nodes reached from s in \leq i steps
        foreach node u in G do
             Nondeterministically continue;
             Nondeterministically follow a path of length \leq i from s;
             Reject if the path does not end at u;
             d = d + 1;
             if (u, v) is an edge in G then
                  c_{i+1} = c_{i+1} + 1;
                 break;
        end
        if d \neq c_i then Reject;
                                                 // check if the result is correct
    end
end
```

NL = coNL

Proof (cont'd).

```
 \begin{array}{ll} d = 0; & // \ d \text{ recounts the nodes reached from } s \\ \textbf{foreach node } u \text{ in } G \textbf{ do} \\ \hline & \text{Nondeterministically continue}; \\ & \text{Nondeterministically follow a path of length} \leq m \text{ from } s; \\ & \text{Reject if the path does not end at } u; \\ & \text{ if } \underline{u = t} \text{ then Reject}; \\ & ; \\ & d = d + 1; \\ \textbf{end} \\ & \text{ if } \underline{d \neq c_m} \text{ then Reject}; \\ & \textbf{else Accept}; \end{array}
```

;

The NTM *M* counts the nodes reached from *s* in the first phrase. The variable c_i is the number of nodes reached from s in $\leq i$ steps. Initially, $c_0 = 1$. To compute c_{i+1} from c_i , *M* goes through each node $v \neq s$ in *G*. For each *v*, *M* tries to find all nodes reached from *s* in $\leq i$ steps. For each such node *u*, *M* increments *d*. It also increments c_{i+1} if *u* points to *v*. If $d = c_i$, *M* has found all node reached from *s* in $\leq i$ steps. Hence c_{i+1} is correct. *M* proceeds to compute c_{i+2} .

At the second phrase, *M* counts nodes reached from *s* but excluding *t*. If *s* reaches the

Ming-Hsien Tsai (IM@NTU)

• The relationship between different complexity classes now becomes

 $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

- We will prove $NL \subsetneq PSPACE$ in the next chapter.
- Hence at least on inclusion is propcer.
 - But we do not know which one.