
Theory of Computing
Space Complexity

Ming-Hsien Tsai

Department of Information Management
National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 1 / 35

Space Complexity

Definition 1
Let M be a TM that halts on all inputs. The space complexity of M is
f : N→ N where f (n) is the maximum number of tape cells that M
scans on any input of length n.
If the space complexity of M is f (n), we say M runs in space f (n).

Definition 2
If N is an NTM wherein all branches of its computation halts on all
inputs. The space complexity of N is f : N→ N where f (n) is the
maximum number of tape cells that N scans on any branch of its
computation for any input of length n.
If the space complexity of N is f (n), we say N runs in space f (n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 2 / 35

Space Complexity Classes

Definition 3
Let f : N→ R+. The space complexity classes, SPACE(f (n)) and
NSPACE(f (n)), are

SPACE(f (n)) = {L : L is decided by an O(f (n)) space TM}
NSPACE(f (n)) = {L : L is decided by an O(f (n)) space NTM}

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 3 / 35

SAT ∈ SPACE(n)

Example 4
Give a TM that decides SAT in space O(n).

Proof.
Consider
M1 = “On input 〈φ〉where φ is a Boolean formula:

1 For each truth assignment to x1, x2, . . . , xm of φ, do
1 Evaluate φ on the truth assignment.

2 If φ ever eavluates to 1, accept; otherwise, reject.”
M1 runs in space O(n) since it only needs to store the current truth
assignment for m variables and m ∈ O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 4 / 35

Universality of NFA’s

Consider ALLNFA = {〈A〉 : A is an NFA and L(A) = Σ∗}.
I ALLNFA is not known to be in NP or in coNP.

Example 5
Show ALLNFA ∈ coNSPACE(n).

Proof.
Consider
N = “On input 〈A〉where A is an NFA with q states:

1 Place a marker on the start state of A.

2 Repeat 2q times:

1 Nondeterministically select an input symbol a and simulate A on a by
changing (or adding) positions of the markers on A’s states.

3 If a marker is ever place on an accept state, reject; otherwise, accept.”

Observe that if A rejects any string, it rejects a string of length at most 2q. Hence N
decides ALLNFA. Moreover, N only needs to store locations of markers and the loop
counter. N runs in space O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 5 / 35

Savitch’s Theorem

Theorem 6 (Savitch)
For f : N→ R+ with f (n) ≥ n, NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Proof.
Let N be an NTM deciding A in space f (n). Assume N has a unique accepting
configuration caccept (how?). We construct a TM M deciding A in space O(f 2(n)). Let w
be an input to N, c1, c2 configurations of N on w, and t ∈ N. Consider
CANYIELD = “On input c1, c2, and t:

1 If t = 1, test whether c1 = c2, or c1 yields c2 in N. If either succeeds, accept;
otherwise, reject.

2 If t > 1, for each configuration cm of N on w do

1 Run CANYIELD(c1, cm,
t
2).

2 Run CANYIELD(cm, c2,
t
2).

3 If both accept, accept.
3 Reject.”

Observe that CANYIELD needs to store the step number, c1, c2, and t for recursion.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 6 / 35

Savitch’s Theorem

Proof (cont’d).
We select a constant d so that N has at most 2df(n) configurations where n = |w|.
M = “On input w:

1 Run CANYIELD(cstart, caccept, 2df(n)).”

Since t = 2df(n), the depth of recusion is O(lg 2df(n)) = O(f (n)). Moreover, CANYIELD
can store its step number, c1, c2, t in space O(f (n)). Thus M runs in space
O(f (n)× f (n)) = O(f 2(n)).
A technical problem for M is to compute f (n) in space O(f (n)). This can be avoided as
follows. Instead of computing f (n), M tries f (n) = 1, 2, 3, For each f (n) = i, M calls
CANYIELD as before but also checks if N reaches a configuration of length i + 1 from
cstart. If N reaches caccept, M accepts as before. If N reaches a configuration of length
i + 1 but fails to reach caccept, M continues with f (n) = i + 1. Otherwise, all
configurations of N have length ≤ f (n). N still fails to reach caccept in 2df(n) time. Hence
M rejects.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 7 / 35

The Class PSPACE

Definition 7
PSPACE is the class of languages decidable by TM’s in polynomial
space. That is,

PSPACE =
⋃

k

SPACE(nk).

Consider the class of langauges decidable by NTM’s in
polynomial space NPSPACE =

⋃
k NSPACE(nk).

By Savitch’s Theorem, NSPACE(nk) ⊆ SPACE(n2k). Clearly,
SPACE(nk) ⊆ NSPACE(nk). Hence NPSPACE = PSPACE.
Recall SAT ∈ SPACE(n) and ALLNFA ∈ coNSPACE(n). By Savitch’s
Theorem, ALLNFA ∈ NSPACE(n) ⊆ SPACE(n2). Hence
ALLNFA ∈ SPACE(n2) (why?). SAT,ALLNFA ∈ PSPACE.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 8 / 35

P, NP, PSPACE, and EXPTIME

P ⊆ PSPACE
I A TM running in time t(n) uses space t(n) (provided t(n) ≥ n).

Similarly, NP ⊆ NPSPACE and thus NP ⊆ PSPACE.
PSPACE ⊆ EXPTIME = ∪kTIME(2nk

)
I A TM running in space f (n) has at most f (n)2O(f (n)) different

configurations (provided f (n) ≥ n).
F A configuration contains the current state, the location of tape head,

and the tape contents.
In summary, P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME.

I We will show P 6= EXPTIME.

P NP EXPTIMEPSPACE
NPSPACE

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 9 / 35

PSPACE-Completeness

Definition 8
A language B is PSPACE-complete if it satisfies

B ∈ PSPACE; and
A ≤P B for every A ∈ PSPACE.

If B only satisfies the second condition, we say it is PSPACE-hard.

We do not define “polynomial space reduction” nor use it.
Intuitively, a complete problem is most difficult in the class.
If we can solve a complete problem, we can solve all problems in
the same class easily.
Polynomial space reduction is not easy at all.

I Recall SAT ∈ SPACE(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 10 / 35

TQBF

Recall the universal quantifier ∀ and the existential quantifier ∃.
When we use quantifiers, we should specify a universe.

I ∀x∃y[x < y ∧ y < x + 1] is false if Z is the universe.
I ∀x∃y[x < y ∧ y < x + 1] is true if Q is the universe.

A quantified Boolean formula is a quantified Boolean formula
over the universe B.
Any formula with quantifiers can be converted to a formula
begins with quantifiers.

I ∀x[x ≥ 0 =⇒ ∃y[y2 = x]] is equivalent to ∀x∃y[x ≥ 0 =⇒ y2 = x].
I This is called prenex normal form.

We always consider formulae in prenex normal form.
If all variables are quantified in a formula, we say the formula is
fully quantified (or a sentence).
Consider

TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula}.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 11 / 35

TQBF is PSPACE-Complete

Theorem 9

TQBF is PSPACE-complete.

Proof.
We first show TQBF ∈ PSPACE. Consider
T = “On input 〈φ〉where φ is a fully quantified Boolean formula:

1 If φ has no quantifier, it is a Boolean formula without variables. If φ evaluates to
1, accept; otherwise, reject.

2 If φ is ∃xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts either,
accept; otherwise, reject.

3 If φ is ∀xψ, call T recursively on ψ[x 7→ 0] and ψ[x 7→ 1]. If T accepts both, accept;
otherwise, reject.

The depth of recursion is the number of variables. At each level, T needs to store the
value of one variable. Hence T runs in space O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 12 / 35

TQBF is PSPACE-Complete

Proof (cont’d).
Let M be a TM deciding A in space nk. For any string w, we construct a quantified
Boolean formula φ such that M accepts w if and only if φ is true. More precisely, let
c1, c2 be collections of variables representing two configurations, and t > 0, we
construct a formula φc1,c2,t such that φc1,c2,t ∧ c1 = c1 ∧ c2 = c2 is true if and only if M
can go from the configuration c1 to the configuration c2 in ≤ t steps.
To construct φc1,c2,1, we check if c1 = c2, or the configuration represented by c1 yields
the configuration represented by c2 in M. We use the technique in the proof of
Cook-Levin Theorem. That is, we construct a Boolean formula stating that all
windows on the rows c1, c2 are valid. Observe that |φc1,c2,1| ∈ O(nk). For t > 1, let

φc1,c2,t = ∃m∀c3∀c4

[
((c3 = c1 ∧ c4 = m) ∨ (c3 = m ∧ c4 = c2)) =⇒ φc3,c4,

t
2

]
Note that |φc1,c2,t| = γnk + |φc3,c4,

t
2
| for some constant γ.

Assume M has a unique accepting configuration caccept. Choose a constant d so that M
has at most 2dnk

configurations on w. Then φ
cstart,caccept,2dnk is true if and only if M

accepts w. Moreover, the depth of recursion is O(lg 2dnk
) = O(nk). Each level increases

the size of φc1,c2,t by O(nk). Hence |φ
cstart,caccept,2dnk | ∈ O(n2k).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 13 / 35

TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 14 / 35

TQBF is PSPACE-Complete

Do we really need quantified Boolean formulae?
For t > 1, consider

φc1,c2,t = ∃m[φc1,m, t
2
∧ φm,c2,

t
2
].

Recall that φc1,c2,1 is an unquantified Boolean formula.
We can construct an unquantified formula Φc1,c2,t such that
〈φc1,c2,t〉 ∈ TQBF if and only if 〈Φc1,c2,t〉 ∈ SAT.
Hence PSPACE ⊆ NP?!
Note that |φc1,c2,t| ≥ 2|φc1,c2,

t
2
|. |φc1,c2,2dnk | is in fact of size O(2nk

).

Quantifiers allow us to “reuse” subformula!

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 14 / 35

Formula Games

Let φ = ∃x1∀x2∃x3 · · ·Qxk[ψ] (Q denotes ∃ or ∀) be a quantified
Boolean formula in prenex normal form.
In a formula game, Player A and Player E take turns selecting
values for x1, x2, . . . , xk.

I Player A selects values of ∀-quantified variables;
I Player E selects values of ∃-quantified variables.

The order of play is determinied by φ.
At the end of play, all variables have their values.

I Player E wins if ψ evaluates to 1;
I Player A wins if ψ evaluates to 0.

A player has a winning strategy for the game associated with φ if
the player wins when both sides play optimally.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 15 / 35

Formula Games

Example 10
Let φ1 = ∃x1∀x2∃x3[(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)]. Show Player E has
a winning strategy.

Proof.
Consider the following strategy for Player E

1 Player E starts by selecting x1 = 1.
2 Player E selects the value of x3 as follows.

1 If Player A selects x2 = 0, Player E selects x3 = 1;
2 If Player A selects x2 = 1, Player E selects x3 = 0.

It is easy to verify that Player E always wins.

Consider
FORMULAGAME = {〈φ〉 : Player E has a winning strategy in the

formula game associated with φ}.
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 16 / 35

FORMULAGAME is PSPACE-Complete

Theorem 11
FORMULAGAME is PSPACE-complete.

Proof.
The formula φ = ∃x1∀x2∃x3 · · · [ψ] is true if there is a value of x1 such
that no matter what value of x2 is ∃x3 · · · [ψ] is true. This is exactly
when Player E has a winning strategy.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 17 / 35

Generalized Geography

In generalized geography, a directed graph G with a designated
start node b (a path of length 0) are given.
Start by Player I. Player I and II takes turns to move.

I At each move, a player selects a neighboring node that form a
simple path in the graph.

The first player fails to extend the path loses the game.
Consider
GG = {〈G, b〉 : Player I has a winning strategy for the generalize

geography game played on G starting at node b}

1
2

3

4

5

6

7

8
9

Player I wins by selecting node 3
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 18 / 35

GG is PSPACE-Complete

Theorem 12
GG is PSPACE-complete.

Proof.
We first show GG ∈ PSPACE. Consider
M = “On input 〈G, b〉where G is a directed graph and b a node of G:

1 If b has outdegree 0, reject.
2 Remove b and all connected edges to obtain G′.
3 For each nodes b1, b2, . . . , bk pointed by b in G, call M on 〈G′, bi〉 recursively.

4 If M accepts 〈G′, bi〉 for all i, reject. Otherwise, accept.”

The depth of recursion is the number of nodes in G. At each level, M stores a node.
Hence M runs in space O(n).
We now give a polynomial time reduction of TQBF to GG. Let φ = ∃x1∀x2∃x3 · · · ∃xk[ψ]
be a quantified Boolean formula where ψ is in 3CNF. (If φ is not alternating or ends
with an ∃-quantifier, add dummy variables.)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 19 / 35

GG is PSPACE-Complete

x1

x3

x2

b

...

c

c1

c2

...

cm

x1

x2

x3

x2

x3

1 0

xk

φ = ∃x1∀x2 · · · ∃xk[(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · ·) ∧ · · ·]

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 20 / 35

GG is PSPACE-Complete

Proof.
We construct G as follows.

For each variable xi, a variable gadget consists of a diamond. The left branch
denotes the value of xi is 1; the right branch denotes the value 0.

A special node c points to every clause gadget.

For each clause, a clause gadget has four nodes. A node cj points to three nodes
for literals. Each literal node in turn points to a node in variable gadgets that
makes the literal true.

The designated start node b is the top node in the variable gadget for x1. The
bottom node of the variable gadget for xk points to the special node c.

The game G starts by selecting values for variables x1, x2, . . . , xk. Player I selects values
for x1, x3, . . . , x2h+1, . . . xk; Player II selects values for x2, x4, . . . , x2h, . . . , xk−1. Then
Player II is forced to move to the special node c.
At the special node c, Player II tries to select a clause. If a clause is satisfied, all its
literals are blocked by value nodes in variable gadgets. Player II will lose. If a clause is
falsified, Player II can move to a value node in variable gadgets and win. Hence
Player II tries to select a falsified clause. Hence φ is true if and only if Player I has a
winning strategy in G.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 21 / 35

TM’s with Sublinear Space

0 01 1 0110

control
b ba a a

read-only

read-write

Figure: Schematics for TM’s using Sublinear Space

For sublinear space, we consider TM’s with two tapes.
I a read-only input tape containing the input string; and
I a read-write work tape.

The input head cannot move outside the portion of the tape
containing the input.
The cells scanned on the work tape contribute to the space
complexity.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 22 / 35

Space Complexity Classes L and NL

Definition 13
L (= SPACE(log n)) is the class of languages decidable by a TM in
logarithmic space.
NL (= NSPACE(log n)) is the class of languages decidable by an NTM
in logarithmic space.

Example 14

A = {0k1k : k ≥ 0} ∈ L.

Proof.
Consider
M = “On input w:

1 Check if w is of the form 0∗1∗. If not, reject.
2 Count the number of 0’s and 1’s on the work tape.
3 If they are equal, accept; otherwise, reject.”
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 23 / 35

PATH is in NL

Example 15
Recall PATH = {〈G, s, t〉 : G is a directed graph with a path from s to t}.
Show PATH ∈ NL.

Proof.
Consider
N = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Repeat m times (m is the number of nodes in G)
1 Nondeterministically select the next node for the path. If the next

node is t, accept.
2 Reject.

N only needs to store the current node on the work tape. Hence N runs
in space O(lg n).

We do not know if PATH ∈ L.
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 24 / 35

Configurations of TM’s with Sublinear Space

Definition 16
Let M be a TM with a separate read-only input tape and w an input
string. A configuration of M on w consists of a state, the contents of
work tape, and locations of the two tape heads.

Note that the input w is no longer a part of the configuration.
If M runs in space f (n) and |w| = n, the number of configurations
of M on w is n2O(f (n)).

I Suppose M has q states and g tape symbols. The number of
configurations is at most qnf (n)gf (n) ∈ n2O(f (n)).

Note that when f (n) ≥ lg n, n2O(f (n)) = 2O(f (n)).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 25 / 35

Savitch’s Theorem Revisited

Recall that we assume f (n) ≥ n in the theorem.
We can in fact relax the assumption to f (n) ≥ lg n.
The proof is identical except that we are simulating an NTM N
with a read-only input tape.
When f (n) ≥ lg n, the depth of recursion is lg(n2O(f (n))) =

lg n + O(f (n)) = O(f (n)). At each level, lg(n2O(f (n))) = O(f (n))
space is needed.
Hence NSPACE(f (n)) ⊆ SPACE(f 2(n)) when f (n) ≥ lg n.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 26 / 35

Log Space Reducibility

Definition 17
A log space transducer is a TM with a read-only input tape, a
write-only output tape, and a read-write work tape. The work tape
may contain O(lg n) symbols.

Definition 18
f : Σ∗ → Σ∗is a log space computable function if there is a log space
transducer that halts with f (w) in its work tape on every input w.

Definition 19
A language A is log space reducible to a language B (written A ≤L B) if
there is a log space computable function f such that w ∈ A if and only
if f (w) ∈ B for every w.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 27 / 35

Properties about Log Space Reducibility

Theorem 20
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 28 / 35

Properties about Log Space Reducibility

Theorem 20
If A ≤L B and B ∈ L, A ∈ L.

Proof.
Let a TM MB decide B in space O(lg n). Consider
MA = “On input w:

1 Compute the first symbol of f (w).
2 Simulate MB on the current symbol.
3 If MB ever changes its input head, compute the symbol of f (w) at

the new location.
I More precisely, restart the computation of f (w) and ignore all

symbols of f (w) except the one needed by MB.
4 If MB accepts, accepts; otherwise, reject.

Can we write down f (w) on MB’s work tape?
I No. f (w) may need more than logarithmic space.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 28 / 35

NL-Completeness

Definition 21
A language B is NL-complete if

B ∈ NL; and
A ≤L B for every A ∈ NL.

Note that we require A ≤L B instead of A ≤P B.
We will show NL ⊆ P (Corollary 24).
Hence every two problems in NL (except ∅ and Σ∗) are
polynomial time reducible to each other (why?).

Corollary 22
If any NL-complete language is in L, then L = NL.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 29 / 35

NL-Completeness

Theorem 23
PATH is NL-complete.

Proof.
Let an NTM M decide A in O(lg n) space. We assume M has a unique accepting
configuration. Given w, we construct 〈G, s, t〉 in log space such that M accepts w if and
only if G has a path from s to t.
Nodes of G are configurations of M on w. For configurations c1 and c2, the edge (c1, c2)
is in G if c1 yields c2 in M. s and t are the start and accepting configurations of M on w
respectively.
Clearly, M accepts w if and only if G has a path from s to t. It remains to show that G
can be computed by a log space transducer. Observe that a configuration of M on w
can be represented in c lg n space for some c. The transducer simply enumerates all
string of legnth c lg n and outputs those that are configurations of M on w. The edges
(c1, c2)’s are computed similarly. The transducer only needs to read the tape contents
under the head locations in c1 to decide whether c1 yields c2 in M.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 30 / 35

NL ⊆ P

Corollary 24

NL ⊆ P.

Proof.
A TM using space f (n) has at most n2O(f (n)) configurations and hence
runs in time n2O(f (n)). A log space transducer therefore runs in
polynomial time. Hence any problem in NL is polynomial time
reducible to PATH. The result follows by PATH ∈ P.

The polynomial time reduction in the proof of Theorem 9 can be
computed in log space.
Hence TQBF is PSPACE-complete with respect to log space
reducibility.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 31 / 35

NL = coNL

Theorem 25 (Immerman–Szelepcsényi)
NL = coNL.

Proof.
We will give an NTM M deciding PATH in space O(lg n). Hence PATH ∈ NL. Recall
that PATH is NL-complete. For any A ∈ NL, we have A ≤L PATH. Hence A ≤L PATH.
Since PATH ∈ NL, A ∈ NL. That is, A = A ∈ coNL. We have NL ⊆ coNL. For any
B ∈ coNL, we have B ∈ NL. Hence B ≤L PATH. Thus B = B ≤L PATH. Since
PATH ∈ NL, we have B ∈ NL. We have coNL ⊆ NL.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 32 / 35

NL = coNL

Proof (cont’d).
Input: On 〈G, s, t〉
c0 = 1;
// G has m nodes

foreach i = 0, . . . ,m− 1 do
ci+1 = 1 ; // ci+1 counts the nodes reached from s in ≤ i + 1 steps

foreach node v 6= s in G do
d = 0 ; // d recounts the nodes reached from s in ≤ i steps

foreach node u in G do
Nondeterministically continue;
Nondeterministically follow a path of length ≤ i from s;
Reject if the path does not end at u;
d = d + 1;
if (u, v) is an edge in G then

ci+1 = ci+1 + 1;
break;

end
if d 6= ci then Reject;
; // check if the result is correct

end
end
// cm = number of nodes reached from sMing-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 33 / 35

NL = coNL

Proof (cont’d).

d = 0 ; // d recounts the nodes reached from s
foreach node u in G do

Nondeterministically continue;
Nondeterministically follow a path of length ≤ m from s;
Reject if the path does not end at u;
if u = t then Reject;
; // do not count t
d = d + 1;

end
if d 6= cm then Reject;
else Accept;
;

The NTM M counts the nodes reached from s in the first phrase. The variable ci is the
number of nodes reached from s in ≤ i steps. Initially, c0 = 1. To compute ci+1 from ci,
M goes through each node v 6= s in G. For each v, M tries to find all nodes reached
from s in ≤ i steps. For each such node u, M increments d. It also increments ci+1 if u
points to v. If d = ci, M has found all node reached from s in ≤ i steps. Hence ci+1 is
correct. M proceeds to compute ci+2.
At the second phrase, M counts nodes reached from s but excluding t. If s reaches the
same set of nodes, t is not reachable from s. M accepts.
M needs to store u, v, ci, ci+1, d, i and a pointer to the head of a path. M runs in O(lg n)
space.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 34 / 35

L,NL,P, and PSPACE

The relationship between different complexity classes now
becomes

L ⊆ NL = coNL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

We will prove NL (PSPACE in the next chapter.
Hence at least on inclusion is propcer.

I But we do not know which one.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 35 / 35

	Basic Definitions
	Savitch's Theorem
	The Class PSPACE
	PSPACE-Completeness
	The Classes L and NL
	NL-Completeness
	NL = coNL

