
Theory of Computing
Time Complexity

Ming-Hsien Tsai

Department of Information Management
National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 1 / 59

Time for Deciding a Language

Let us consider A = {0n1n : n ≥ 0}.
How much time does a single-tape TM need to decide A?
Consider
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.
3 If 0’s or 1’s still remain, reject. Otherwise, accept.”

How much “time” does M1 need for an input w?

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 2 / 59

Time Complexity

Definition 1
Let M be a TM that halts on all inputs. The running time (or time
complexity) of M is the function f : N→ N where f (n) is the running
time of M on any input of length n.

If f (n) is the running time of M, we say M runs in time f (n) and M
is an f (n) time TM.
In worst-case analysis, the longest running time of all inputs of a
particular length is considered.
In average-case analysis, the average of all running time of inputs
of a particular length is considered instead.
We only consider worst-case analysis in the course.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 3 / 59

Big-O and Small-O

Definition 2
Let f , g : N→ R+. f (n) = O(g(n)) if there are c,n0 ∈ Z+ such that for all
n ≥ n0,

f (n) ≤ c(g(n)).

g(n) is an upper bound (or an asymptotic upper bound) for f (n).
nc(c ∈ R+) is a polynomial bound.
2nd

(d ∈ R+) is an exponential bound.

Definition 3
Let f , g : N→ R+. f (n) = o (g (n)) if

lim
n→∞

f (n)

g(n)
= 0.

That is, for any c ∈ R, there is an n0 that f (n) < c(g) for all n ≥ n0.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 4 / 59

Time Complexity of M1

Recall
M1 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan across the tape, cross a 0 and a 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Let |w| = n.

I Step 1 takes O(n) (precisely, ≤ n).
I Step 2 has O(n) iterations (precisely, ≤ n/2).

F An iteration takes O(n) (precisely, ≤ n).
I Step 3 takes O(n) (precisely, ≤ n).

The TM M1 decides A = {0n1n : n ≥ 0} in time O(n2).
I O(n2) = O(n) + O(n)×O(n) + O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 5 / 59

Time Complexity Class

Definition 4
Let t : N→ R+. The time complexity class TIME(t(n)) is the collection
of all languages that are decided by a O(t(n)) time TM.

A = {0n1n : n ≥ 0} is decided by M1 in time O(n2). A ∈ TIME(n2).
Time complexity classes characterizes languages, not TM’s.

I We don’t say M1 ∈ TIME(n2).

A language may be decided by several TM’s.
Can A be decided more quickly asymptotically?

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 6 / 59

Models and Time Complexity

Consider the following TM:
M2 = “On input string w:

1 Scan the tape and reject if a 0 appears after a 1.
2 Repeat if 0 or 1 appear on the tape:

1 Scan the tape and check if the total number of 0’s and 1’s is even. If
not, reject.

2 Scan the tape, cross every other 0 from the first 0, and cross every
other 1 from the first 1.

3 If 0’s or 1’s still remain, reject. Otherwise, accept.”
Analysis of M2.

I Step 1 takes O(n).
I Step 2 has O(lg n)(= log2(n)) iterations (why?). At each iteration,

F Step 1 takes O(n).
F Step 2 takes O(n).

I Step 3 takes O(n).
M2 decides A in time O(n lg n).

I O(n lg n) = O(n) + O(lg n)×O(n) + O(n).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 7 / 59

Models and Time Complexity

Consider the following two-tape TM:
M3 = “On input string w:

1 Scan tape 1 and reject if a 0 appears after a 1.
2 Scan tape 1 and copy the 0’s onto tape 2.
3 Scan tape 1 and cross a 0 on tape 2 for a 1 on tape 1.
4 If all 0’s are crossed off before reading all 1’s, reject. If some 0’s are

left after reading all 1’s, reject. Otherwise, accept.”
Analysis of M3.

I Each step takes O(n).
For the same language A = {0n1n : n ≥ 0}.

I The TM M1 decides A in time O(n2), the TM M2 decides A in time
O(n lg n), and the two-tape M3 decides A in time O(n).

In computability theory, all reasonable variants of TM’s decide the
same language (Church-Turing thesis).
In complexity theory, different variants of TM’s may decide the
same in different time.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 8 / 59

Complexity Relationship with Multitape TM’s

Theorem 5

Let t(n) be a function with t(n) ≥ n. Every t(n) time multitape Turing machine has an
equivalent O(t2(n)) time single-tape TM.

Proof.
We analyze the simulation of a k-tape TM M is by the TM S. Observe that each tape of
M has length at most t(n) (why?).
For each step of M, S has two passes:

The first pass gathers information (O(kt(n))).

The second pass updates information with at most k shifts (O(k2t(n))).

Hence S takes O(n) + O(k2t2(n)) (= O(n) + O(t(n))×O(k2t(n))). Since t(n) ≥ n, we
have S runs in time O(t2(n)) (k is independent of the input).

0 1 xy0

ab xyb b 1 # b b
•
00 b xy

•
a ##

SM

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 9 / 59

Time Complexity of Nondterministic TM’s

Definition 6
Let N be a nondeterministic TM that is a decider. The running time of
N is a function f : N→ N where f (n) is the maximum number of steps
among any branch of N’s computation on input of length n.

f (n)
... ...

accept

reject

reject

accept

f (n)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 10 / 59

Complexity Relationship with NTM’s

Theorem 7

Let t(n) be a function with t(n) ≥ n. Every t(n) time single-tape NTM has
an equivalent 2O(t(n)) time single-tape TM.

Proof.
Let N be an NTM running in time t(n). Recall the simulation of N by a
3-tape TM D with the address tape alphabet Σb = {1,2, . . . ,b} (b is the
maximal number of choices allowed in N).
Since N runs in time t(n), the computation tree of N has O(bt(n)) nodes.
For each node, D simulates it from the start configuration and thus
takes time O(t(n)). Hence the simulation of N on the 3-tape D takes
2O(t(n))(= O(t(n))×O(bt(n))) time.
By Theorem 5, D can be simulated by a single-tape TM in time
(2O(t(n)))2 = 2O(t(n)).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 11 / 59

The Class P

It turns out that reasonable deterministic variants of TM’s can be
simulated by a TM with a polynomial time overhead.

I multitape TM’s, TM’s with random access memory, etc.
The polynomial time complexity class is rather robust.

I That is, it remains the same with different computational models.

Definition 8
P is the class of languages decidable in polynomial time on a
determinsitic single-tape TM. That is,

P =
⋃

k

TIME(nk).

We are interested in intrinsic characters of computation and hence
ignore the difference among variants of TM’s in this course.
Solving a problem in time O(n) and O(n100) certainly makes lots
of difference in practice.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 12 / 59

Problems in P

We will give some problems and their deciders in P.
We will use a reasonable encoding for our problems.
For natural numbers, we represent them in base k ≥ 2 notation.

I Uniary encoding is not reasonable.
I 17 = 100012 = 111111111111111111.

For graphs, we use adjacency matrices.
I The (i, j)th entry is 1 if there is an edge from node i to node j.

Note that the size of a graph is a polynomial in our reasonable
encoding of the graph.
Consider the following problem:

PATH = {〈G, s, t〉 : there is a path from s to t in the directed graph G}.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 13 / 59

PATH is in P

Theorem 9
PATH ∈ P.

Proof.
Consider
M = “On input 〈G, s, t〉where G is a directed graph with nodes s and t:

1 Place a mark on s.

2 Repeat until no more nodes are marked:

1 If there is an edge (a, b) from a marked node a to an unmarked node b,
mark b.

3 If t is marked, accept. Otherwise, reject.”

Let m be the number of nodes in G. Step 1 takes O(1). Step 2 has O(m) iterations; each
iteration takes O(m2). Step 3 take O(1). Hence M is a polynomial time algorithm for
PATH.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 14 / 59

RELPRIME is in P

Consider RELPRIME = {〈x, y〉 : x and y are relatively prime}.

Theorem 10
RELPRIME ∈ P.

Proof.
Recall the Euclidean algorithm:
E = “On input 〈x, y〉where x, y ∈ Z+ in binary:

1 Repeat until y = 0

1 x← x mod y.
2 Exchange x and y.

2 Output x”.

Consider
R = “On input 〈x, y〉where x, y ∈ Z+ in binary:

1 Run E on 〈x, y〉.
2 If E outputs 1, accept; otherwise, reject.”

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 15 / 59

RELPRIME is in P

Proof (cont’d).
It remains to analyze the time complexity of E. We show each execution (except
perhaps the first) of Step 1.1 cuts the value of x by a half.
Observe that x > y for each execution (except perhaps the first). Right before Step 1.1,

If x
2 ≥ y, then x mod y < y ≤ x

2 .

If x
2 < y, then x mod y = x− y ≤ x

2 .

Hence x draps by a half right after Step 1.1. Since x and y exchanges values at Step 1.2,
x and y drop by a half every other iteration. Hence Step 1 has O(lg x + lg y) iterations.
Recall we are use the binary encoding. Step 1 has a polynomial number of iterations.
Moreover, comparison, modulo, and assignments take a polynomial number of time.
R decides RELPRIME in polynomial time.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 16 / 59

Context-Free Languages are in P

Theorem 11
Every context-free language is a member of P.

Proof.
Consider D = “On input w = w1w2 · · ·wn: // G is in Chomsky normal form

1 If w = ε and S −→ ε ∈ G, accept.

2 For i = 1 to n do // Handle substrings of length 1
For each variable A

If A −→ b ∈ G and wi = b, put A in table(i, i).

3 For l = 2 to n do // Handle substrings of length l

1 For i = 1 to n− l + 1 do // Handle the substring at wiwi+1 · · ·wj

1 j = i + l− 1.
2 For k = i to j− 1 do // Consider wi · · ·wk and wk+1 · · ·wj

For each A −→ BC ∈ G do
If B ∈ table(i, k) and C ∈ table(k + 1, j), add A to table(i, j).

4 If S ∈ table(1, n), accept; otherwise, reject.”
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 17 / 59

Context-Free Langauges are in P

Proof.
Let G have v variables and r rules (v, r are independent of |w|).

Step 1 executes once.

Step 2 has O(n) iterations.

I Each iteration has O(v) subiterations.

Step 3 has O(n) iterations.
I Each iteration has O(n) subiterations.

F Each subiteration has O(n) subsubiterations; each subsubiterations
has r subsubsubiterations.

Step 4 executes once.

Since table lookup and insertion take a polynomial number of time, D runs in
polynomial time.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 18 / 59

The Class NP

Definition 12
A verifier for a language A is an algorithm V where

A = {w : V accepts 〈w, c〉 for some c}.

c is a certificate or proof of membership in A. A polynomial time
verifier runs in polynomial time in the length of w (not 〈w, c〉). A
language A is polynomially verifiable if it has a polynomial time
verifier.

Note that a certificate has a length polynomial in |w|.
I Otherwise, V cannot run in polynomial time in |w|.

Definition 13
NP is the class of languages that have polynomial time verifiers.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 19 / 59

Hamiltonian Paths

A Hamiltonian path in a directed graph G is a path that goes
through every node exactly once. Consider

HAMPATH =
{〈G, s, t〉 : G is a directed graph with a Hamiltonian path

from s to t}.

HAMPATH ∈ NP.
I Verifying whether c is a Hamiltonian path from s to t can be done in

polynomial time.
I A certificate for 〈G, s, t〉 ∈ HAMPATH is a Hamiltonian path from s

to t.

Finding a Hamiltonian path from s to t seems harder.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 20 / 59

Composites

A natural number is composite if it is the product of two integers
greater than 1. Consider

COMPOSITES = {〈x〉 : x = pq for p, q ∈ Z+ and p, q > 1}.

COMPOSITES ∈ NP.
I Verifying whether x is the product of two integers p, q with p, q > 1

can be done in polynomial time.
I A certificate for 〈x〉 ∈ COMPOSITES is 〈p, q〉with p, q ∈ Z+, p, q > 1,

and x = pq.

Finding p, q ∈ Z+ with p, q ∈ Z+, p, q > 1, and x = pq seems
harder.

I Can we find p in {2, 3, . . . , d
√

xe}? Is it a polynomial time
algorithm?

There is however a polynomial time algorithm for COMPOSITES.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 21 / 59

An NTM Dedicing HAMPATH

Consider
N1 =
“On input 〈G, s, t〉where G is a directed graph with nodes s, t:

1 Nondeterministically write m numbers p1, . . . , pm (G has m nodes).
2 If there is any repetition, reject.
3 If s 6= p1 or t 6= pm, reject.
4 If (pi, pi+1) is not an edge of G for some 1 ≤ i < m, reject.
5 Otherwise, accept.”

Since N1 runs in polynomial time and L(N1) = HAMPATH, N1
decides HAMPATH.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 22 / 59

NP and NTM’s

Theorem 14
A language is in NP if and only if it is decided by a nondeterministic polynomial time Turing
machine.

Proof.
Let V be a verifier for a language A running in time nk. Consider
N = “On input w of length n:

1 Nondeterministically select string c of length ≤ nk.
2 Run V on 〈w, c〉.
3 If V accepts, accept; otherwise, reject.”

Conversely, let the NTM N decide A and c the address of an accepting configuration in
the computation tree of N. Consider
V = “On input 〈w, c〉:

1 Simulate N on w from the start configuration by c.
2 If the configuration with address c is accepting, accept; otherwise, reject.”

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 23 / 59

The Nondeterministic Time Complexity Class

Definition 15
NTIME (t (n)) = { L : L is a language decided by a O (t (n)) time NTM
}.

Corollary 16

NP =
⋃

k

NTIME(nk).

Recall that class TIME(t(n)) and

P =
⋃

k

TIME(nk).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 24 / 59

Cliques in Graphs

A clique in an undirected graph is subgraph where every two
nodes are connected.
A k-clique is a clique with k nodes.
Consider

CLIQUE = {〈G, k〉 : G is an undirected graph with a k-clique}.

Figure: A Graph has a 5-Clique

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 25 / 59

CLIQUE is in NP

Theorem 17
CLIQUE ∈ NP.

Proof.
Consider
V = “On input 〈〈G, k〉, c〉:

1 Check if c is a set of k nodes in G.
2 Check if G contains all edges connecting nodes in c.
3 If both pass, accept; otherwise, reject.”

Alternatively, consider
N = “On input 〈G, k〉where G is an undirected graph:

1 Nondeterministically select a set c of k nodes of G.
2 Check if G contains all edges connecting nodes in c.
3 If yes, accept; otherwise, reject.”

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 26 / 59

Subset Sums

Consider
SUBSETSUM = {〈S, t〉 : S = {x1, . . . , xk} a multiset and for some

{y1, . . . , yl} ⊆ S,Σyi = t}

Theorem 18
SUBSETSUM ∈ NP.

Proof.
V = “On input 〈〈S, t〉, c〉:

1 Check if S contains all the numbers in c.
2 Check if c sums to t.
3 If both pass, accept; otherwise, reject.”

Alternatively, N = “On input 〈S, t〉where S is a multiset:

1 Nondeterministcally select a subset c of numbers from S.
2 Check if c sums to t.
3 If both pass, accept; otherwise, reject.”

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 27 / 59

The Class coNP

Definition 19
coNP = {L : L ∈ NP}.

HAMPATH ∈ coNP since HAMPATH = HAMPATH ∈ NP.
I HAMPATH does not appear to be polynomial time verifiable.
I What is a certificate showing there is no Hamiltonian path?

CLIQUE ∈ coNP.
I CLIQUE does not appear to be polynomial time verifiable.
I What is a certificate showing there is no k-clique?

SUBSETSUM ∈ coNP.
I SUBSETSUM does not appear to be polynomial time verifiable.
I What is a certificate showing there is no subset summing to t?

We do not know if coNP is different from NP.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 28 / 59

P vs NP

Recall
I P is the class of languages which membership can be decided

quickly.
I NP is the class of languages which membership can be verified

quickly.

We have shown HAMPATH,CLIQUE,SUBSETSUM ∈ NP.
We have shown PATH,RELPRIME ∈ P.
Since a polynomial time TM is also a polynomial NTM, we have

L ∈ P implies L ∈ NP for every language L.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 29 / 59

P vs NP

P = NPPNP

Figure: Possible Relation between P and NP

To the best of our knowledge, we only know

NP ⊆ EXPTIME =
⋃

k

TIME(2nk
). (Theorem 7)

Particularly, we do no know if P ?
= NP.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 30 / 59

Satisfiability

Let B = {0,1} be the truth values.
A Boolean variable takes values from B.
Recall the Boolean operations

0 ∧ 0 = 0
0 ∧ 1 = 0
1 ∧ 0 = 0
1 ∧ 1 = 1

0 ∨ 0 = 0
0 ∨ 1 = 1
1 ∨ 0 = 1
1 ∨ 1 = 1

0 = 1
1 = 0

A Boolean formula is an expression constructed from Boolean
variables and opearations.

I φ = (x ∧ y) ∨ (x ∧ z) is a Boolean formula.
A Boolean formula is satisfiable if an assignments of 0’s and 1’s to
Boolean variables makes the formula evaluate to 1.

I φ is satisfiable by taking {x 7→ 0, y 7→ 1, z 7→ 0}.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 31 / 59

The Satisfiability Problem

The satisfiability problem is to test whether a Boolean formula is
satisfiable.
Consider

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}.

Theorem 20 (Cook-Levin)
SAT ∈ P if and only if P = NP.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 32 / 59

Polynomial Time Reducibility

Definition 21
f : Σ∗ → Σ∗ is a polynomial time computable function if a polynomial
time TM M halts with only f (w) on its tape upon any input w.

Definition 22
A language A is polynomial time mapping reducible (polynomial time
reducible, or polynomial time many-one reducible) to a language B
(written A ≤P B) if there is a polynomial time computable function
f : Σ∗ → Σ∗ that

w ∈ A if and only if f (w) ∈ B for every w.

f is called the polynomial time reduction of A to B.

Recall the definitions of computable functions and mapping
reducibility.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 33 / 59

Properties about Polynomial Time Reducibility

Theorem 23
If A ≤P B and B ∈ P, A ∈ P.

Proof.
Let the TM M decide B and f a polynomial time reduction of A to B.
Consider
N = “On input w:

1 Compute f (w).
2 Run M on f (w).”

Since the composition of two polynomials is again a polynomial, N
runs in polynomial time.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 34 / 59

The 3SAT Problem

A literal is a Boolean variable or its negation.
A clause is a disjunction (∨) of literals.

I x1 ∨ x2 ∨ x3 ∨ x4 is a clause.
A Boolean formula is in conjunctive normal form (or a
CNF-formula) if it is a conjunction (∧) of clauses.

I (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x6) is a CNF-formula.

In a satisfiable CNF-formula, each clause must contain at least one
literal assigned to 1.
A Boolean formula is a 3CNF-formula if it is a CNF-formula
whose clauses have three literals.

I (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x2 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) is a 3CNF-formula.

Consider

3SAT = {〈φ〉 : φ is a satisfiable 3CNF-formula}.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 35 / 59

3SAT ≤P CLIQUE

Theorem 24

3SAT ≤P CLIQUE.

Proof.
Given a 3CNF-formula φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck), we
would like to find a graph G and a number k such that 〈φ〉 ∈ 3SAT if and only if
〈G, k〉 ∈ CLIQUE. We need gadgets to simulate Boolean variables and clauses in φ.

For each clause ai ∨ bi ∨ ci, add three corresponding nodes to G.

I G has 3k nodes.

For each pair of nodes in G, add an edge except when

I the pair of nodes correspond to literals in a clause.
I the pair of nodes correspond to complementary literals.

We next show that φ is satisfiable if and only if G has a k-clique.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 36 / 59

3SAT ≤P CLIQUE

x2

x2

x1

x1

x2

x1 x2x2

x1

(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Proof.
Suppose φ has a satisfying assignment. Each clause has at least one literal assigned to
1. We pick a node corresponding to true literal from each clause. Any pair of the
chosen nodes do not belong to the same clause. Since a literal and its complement
cannot be 1 simultaneously, any pair of the chosen nodes are not complementary.
Hence there is an edge between any pair of the chosen nodes. We have a k-clique.
Conversely, suppose there is a k-clique. Since there is no edge between any two nodes
in a clause, the k-clique must have one node from each of the k clauses. Moreover,
there is no edge between complementary literals. Either a literal or its complement
appears in the k-clique but not both. φ is satisfied by the assignment making literals in
the clique true.
It is easy to see that G can be constructed from φ in polynomial time.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 37 / 59

NP-Completeness

Definition 25
A language B is NP-complete if

B is in NP; and
every A in NP is polynomial time reducible to B.

Theorem 26
If B is NP-complete and B ∈ P, then P = NP.

Theorem 27

If C ∈ NP, B is NP-complete, and B ≤P C, then C is NP-complete.

Proof.
Since B is NP-complete, there is a polynomial time reduction f of A to
B for any A ∈ NP. Since B ≤P C, there is a polynomial time reduction g
of B to C. g ◦ f is a polynomial time reduction of A to C.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 38 / 59

Cook-Levin Theorem

Theorem 28

SAT is NP-complete.

Proof.
For any Boolean formula φ, an NTM nondeterministically choose a truth assignment.
It checks whether the assignment satisfies φ. If so, accept; otherwise, reject. Hence
SAT ∈ NP.
Let A ∈ NP and the NTM N decide A in nk time. For any input w, a tableau for N on w
is an nk × nk table whose rows are the configurations along a branch of the
computation of N on w. A tableau of size nk × nk has nk × nk cells. We assume each
configuration starts and ends with a # symbol. A tableau is accepting if any of its
rows is an accepting configuration.
Each accepting tableau for N on w corresponds to an accepting computation of N on
w. We therefore construct a Boolean formula φ such that φ is satisfiable if and only if
there is an accepting tableau for N on w.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 39 / 59

Cook-Levin Theorem

q0 w0 w1 wj wn xyxy

nk

nk

#
#
#

#

#
#
#

#

window

Proof (cont’d).
Let C = Q ∪ Γ ∪ {#}where Q and Γ are the states and the tape alphabet of N. For
1 ≤ i, j ≤ nk and s ∈ C, the Boolean variable xi,j,s denotes the content of the cell cell[i, j].
That is, xi,j,s is 1 if and only if cell[i, j] = s. To force each cell to contain exactly one
symbol from C, consider

φcell =
∧

1≤i,j≤nk

(∨
s∈C

xi,j,s

)
∧

 ∧
s,t∈C,s6=t

(xi,j,s ∨ xi,j,t)

 .
Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 40 / 59

Cook-Levin Theorem

Proof (cont’d).
To force the tableau to begin with the start configuration, consider

φstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w2 ∧ · · · ∧ x1,n+2,wn∧
x1,n+3,xy ∧ · · · ∧ x1,nk−1,xy ∧ x1,nk,#.

To force an accepting configuration to appear in the tableau, consider

φaccept =
∨

1≤i,j≤nk

xi,j,qaccept .

To force the configuration at row i yields the configuration at row i + 1, consider a
window of 2× 3 cells. For example, assume δ(q1,a) = {(q1,b,R)} and
δ(q1,b) = {(q2,c, L), (q2,a,R)}. The following windows are valid:

a q1 b
q2 a c

a q1 b
a a q2

a a q1

a a b
b a
b a

a b a
a b q2

b b b
c b b

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 41 / 59

Cook-Levin Theorem

Proof.
Since C is finite, there are only a finite number of valid windows. For any window W

c1 c2 c3

c4 c5 c6
, consider

ψW = xi,j−1,c1 ∧ xi,j,c2 ∧ xi,j+1,c3 ∧ xi+1,j−1,c4 ∧ xi+1,j,c5 ∧ xi+1,j+1,c6

To force every window in the tableau to be valid, consider

φmove =
∧

1≤i≤nk,1≤j<nk

(∨
W is a valid

ψW

)
.

Finally, consider the following Boolean formula:

φ = φcell ∧ φstart ∧ φaccept ∧ φmove.

|φcell| = O(n2k), |φstart| = O(nk), |φaccept| = O(n2k), and |φmove| = O(n2k). Hence
|φ| = O(n2k). Moreover, φ can be constructed from N in time polynomial in n.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 42 / 59

3SAT is NP-Complete

Corollary 29
3SAT is NP-complete.

Proof.
We convert the Boolean formula φ in the proof of Theorem 28 into a 3CNF-formula.
We begin by converting φ into a CNF-formula.
Observe that the conjunction of CNF-formulae is again a CNF-formula. Note that φcell,
φstart, and φaccept are already in CNF (why?). φmove is of the following form:

∧
1≤i≤nk,1≤j<nk

(∨
W is valid

(l1 ∧ l2 ∧ l3 ∧ l4 ∧ l5 ∧ l6)

)

By the law of distribution, φmove can be converted into a CNF-formula. Note that the
conversion may increase the size of φmove. Yet the size is independent of |w|. Hence
the size of the CNF-formula φ still polynomial in |w|.
To a clause of k literals into clauses of 3 literals, consider l1 7→ (l1 ∨ l1 ∨ l1),
l1 ∨ l2 7→ (l1 ∨ l2 ∨ l2), and
l1 ∨ l2 ∨ · · · lp 7→ (l1 ∨ l2 ∨ z1) ∧ (z1 ∨ l3 ∨ z2) ∧ · · · ∧ (zp−3 ∨ lp−1 ∨ lp).

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 43 / 59

More NP-Complete Problems

To find more NP-complete problems, we apply Theorem 27.
Concretely, to show C is NP-complete, do

I prove C is in NP; and
I find a polynomial time reduction of an NP-complete problem (say,

3SAT) to C.

In Theorem 24, we have shown 3SAT ≤P CLIQUE. Therefore

Corollary 30
CLIQUE is NP-complete.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 44 / 59

6= SAT

Let φ be a 3CNF-formula.
I For instance (x0 ∨ x1 ∨ x2) ∧ (x0 ∨ x1 ∨ x3).

An 6=-assignment to the variables of φ makes every clause of φ to
have two literals with different truth values.

I {x0 7→ 1, x1 7→ 0, x2 7→ 0, x3 7→ 0} is an 6=-assignment.
I {x0 7→ 1, x1 7→ 0, x2 7→ 1, x3 7→ 0} is not an 6=-assignment.

Observe that the negation of an 6=-assignment is again an
6=-assignment.

I {x0 7→ 0, x1 7→ 1, x2 7→ 1, x3 7→ 1} is an 6=-assignment.

Define

6= SAT = {〈φ〉 : φ is a 3CNF formula with an 6=-assignment}.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 45 / 59

6= SAT is NP-Complete

Theorem 31
6= SAT is NP-complete.

Proof.
We reduce 3SAT to 6= SAT. Let b be a Boolean variable not in φ.
Replace the i-th clause (li0 ∨ li1 ∨ li2) in φ with (li0 ∨ li1 ∨ zi) and
(zi ∨ li2 ∨ b).
Assume φ is satisfiable. We extend the satisfying assignment by

assigning b to 0 and zi to
{

0 if li2 = 0 or li0 = li1 = li2 = 1
1 otherwise

.

Conversely, assume we have an 6=-assignment. We show the
6=-assignment satisfies φ as well. Without loss of generality, assume
b = 0 in the 6=-assignment. If li2 = 1 in the 6=-assignment, the i-th
clause in φ is satisfied. Otherwise, zi = 1 for zi ∨ li2 ∨ b has two literals
of different values. Then li0 = 1 or li1 = 1 because li0 ∨ li1 ∨ zi has two
literals of different values. The i-th clause of φ is satisfied as well.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 46 / 59

Vertex Cover

Let G be an undirected graph. A vertex cover of G is a set of nodes
where every edge of G touches one of these nodes.
Consider

VERTEXCOVER = {〈G, k〉 : G is an undirected graph with
a k-node vertex cover}.

x1 x1 x2 x2

x1

x1 x1 x1

x2 x2x2x2x2

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 47 / 59

VERTEXCOVER is NP-Complete

Theorem 32
VERTEXCOVER is NP-complete.

Proof.
We show 3SAT ≤P VERTEXCOVER. Let φ be a 3CNF-formula with l
variables and k clauses. We need gadgets to simulate variables and
clauses in φ. We want to find a graph G such that φ is satisfiable if and
only if G has a l + 2k-node vertex cover.

For each variable x, add two nodes corresponding to x and x.
Moreover, an edge connecting the two nodes is added to G.
For each clause, add three nodes corresponding to the literals.
Three edges connecting the three nodes are added to G. Moreover,
each of the three node is connected to the node of identical label in
the variable gadgets.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 48 / 59

VERTEXCOVER is NP-Complete

Proof (cont’d).
We show that φ is satisfiable if and only if G has an (l + 2k)-node vertex
cover. Suppose there is a truth assignment satisfying φ. Either of the
nodes in each variable gadget is 1. We select these l nodes. For each
clause gadget, one of the three nodes corresponds to a true literal. We
select the other two nodes. These l + 2k nodes form a vertex cover.
Conversely, suppose G has a vertex cover of l + 2k nodes. Since there is
an edge in every variable gadget, one node in each variable gadget is
select. Moreover, two nodes are needed to cover the three edges in
each clause gadget. Hence l nodes are from the variable gadgets and 2k
nodes are from the clause gadgets. We assign the l literals in the
variable gadgets to 1. For each clause gadget, only two nodes are in
the vertex cover. Observe that each node in a clause gadget has three
edges. To cover the three edges connected to the node not in the vertex
cover, the literal corresponding to the node must be 1.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 49 / 59

3COLOR

A coloring of a graph is an assignment of colors to its nodes so
that adjacent nodes have different colors. Define

3COLOR = {〈G〉 : G has a coloring with 3 colors}.

x1x1 x2 x2

r

φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 50 / 59

3COLOR is NP-Complete

Theorem 33
3COLOR is NP-complete.

Proof.
We reduce 6= SAT to 3COLOR. Let r be a node. A variable gadget for x
has two nodes (labeled x and x) with edges {x, x}, {r, x}, and {r, x}. A
clause gadget for l0 ∨ l1 ∨ l2 has three nodes labeled l0, l1, l2 with edges
{l0, l1}, {l0, l2}, {l1, l2}. Moreover, each li is connected to the
corresponding node in variable gadgets.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 51 / 59

HAMPATH is NP-Complete

Theorem 34
HAMPATH is NP-complete.

Proof.
We show 3SAT ≤P HAMPATH. Let φ be a 3CNF-formula with l variables and k
clauses. We want to construct a graph G with two nodes s and t such that φ is
satisfiable if and only G has a Hamiltonian path from s to t.

c1 ck

· · ·

xi
· · ·

· · ·

· · ·

x1

x2

xl

c1

c2

c3

ck

...

...

s

t
: separator nodes

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 52 / 59

HAMPATH is NP-Complete

· · ·· · ·· · ·

xi

cj′cj

cj′ contains xi

cj contains xi

Proof (cont’d).
Each variable gadget has 4 + 3k nodes. Note that a Hamltonian path traverses a
variable gadget in one of the two ways: from left to right, or from right to left.
Each clause gadget has 1 node. If xi appears in cj, two edges are added to visit the
clause gadget cj from left to right. If xi appears in cj′ , two edges are added to visit the
clause gadget cj′ from right to left.
We show that φ is satisfiable if and only if there is a Hamiltonian path from s to t in G.
Suppose φ has a satisfying assignment. We start from s and go through each variable
gadget in turn. If xi is assigned to 1, we traverse xi’s gadget from left to right. If xi is
assigned to 0, we traverse xi’s gadget from right to left. For each clause, one of its
literal is 1. We detour to its gadget when traversing variable gadgets.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 53 / 59

HAMPATH is NP-Complete

Proof (cont’d).
Conversely, suppose G has a Hamiltonian path from s to t. We argue that the
Hamiltonian path must traverse every variable gadgets and detour to every clause
gadget on its way. Suppose not. Then a2 or a3 is a separator node.

If a2 is a separator node, it is not connected to any clause gadget. The path must
visit a2 from a3 since a1 has been visited. But the path would end in a2.

If a3 is a separator node, a1 and a2 are in the same clause pair. a2 must be visited
from a3 since a1 and c have been visited. But the path would end in a2 as well.

c

a1 a2 a3

...

c

a1 a2 a3

...

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 54 / 59

UHAMPATH is NP-Complete

Consider

UHAMPATH = {〈G, s, t〉 : G is an undirected graph with a Hamiltonian path
from s to t}.

Theorem 35
UHAMPATH is NP-complete.

Proof.
We show HAMPATH ≤P UHAMPATH. Let G be a directed graph. We construct an
undirected graph G′ as follows.

For each node u in G, we have three nodes uin, umid, and uout in G′. Moreover, G′

has edges {uin, umid} and {umid, uout}.

For each edge (u, v) in G, add the edge {uout, vin} to G′.

We now show that G has a Hamiltonian path from s to t if and only if G′ has a
Hamiltonian path from sin to tout.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 55 / 59

UHAMPATH is NP-Complete

Proof.
For a Hamiltonian path s, u1, u2, . . . , uk, t in G, sin, smid, sout, uin

1 , u
mid
1 , uout

1 , uin
2 , . . . ,

uin
k , u

mid
k , uout

k , tin, tmid, tout is a Hamiltonian path in G′.
Conversely, any Hamiltonian path in G′ from sin must be of the form

sin, smid, sout, uin
i , . . . , (for some i).

But this corresponds to the edge (s, ui) in G. Moreover, the next node must be umid
i ,

and then followed by uout
i . The Hamiltonian path now looks like

sin, smid, sout, uin
i , u

mid
i , uout

i , uin
j , . . . , (for some j).

But this corresponds to the edges (s, ui) and (ui, uj) in G. Eventually we reach tout and
obtain a Hamiltonian path from s to t in G.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 56 / 59

SUBSETSUM is NP-Complete

Theorem 36
SUBSETSUM is NP-complete.

Proof.
We show 3SAT ≤P SUBSETSUM. Let φ be a 3CNF-formula with l variables and k
clauses. We construct a multiset S so that φ is satisfiable if and only if the sum of a

subset of S is t =

l︷ ︸︸ ︷
1 · · · 1

k︷ ︸︸ ︷
3 · · · 3 (a very large decimal number).

For each variable xi, we add numbers yi and zi to S if xi appears in cr, ct and xi

appears in cs (unspecified digits are 0):

· · · i · · · · · · cr · · · cs · · · ct · · ·
yi = 1 1 1
zi = 1 1

For each clause cj, add gj and hj to S (unspecified digits are 0):

· · · · · · cj · · ·
gj = hj = 1

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 57 / 59

SUBSETSUM is NP-Complete

1 2 3 4 · · · l c1 c2 · · · ck

y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 0 1 0 0 · · · 0 0 1 · · · 0
z2 0 1 0 0 · · · 0 1 0 · · · 0
y3 0 0 1 0 · · · 0 1 1 · · · 0
z3 0 0 1 0 · · · 0 0 0 · · · 1
g1 1 0 · · · 0
h1 1 0 · · · 0
g2 0 1 · · · 0
h2 0 1 · · · 0
...

...
gk 0 0 · · · 1
hk 0 0 · · · 1
t 1 1 1 1 · · · 1 3 3 · · · 3

φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ · · ·) ∧ (x3 ∨ · · ·)

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 58 / 59

SUBSETSUM is NP-Complete

Proof.
Suppose φ has a satisfying truth assignment. We put yi to the subset if xi is assigned to
1; we put zi if xi is assigned to 0. Since either yi or zi is selected for each i, the first l
digits of the sum are all 1’s. For each of the last k digits of the sum, it cannot be 0 since
one of the literals in the clause is 1. We add gi’s or hi’s to the subset so that the last k
digits of the sum are all 3’s.
Conversely, suppose S has a subset whose sum is t. Observe that each digit has at
most 5 1’s. There cannot be any carry. Either yi or zi must be selected for each i since
the first l digits are all 1’s. This gives us a truth assignment for φ. Finally, note that the
last k digits are all 3’s. Yet gj and hj contribute at most 2 for each of the last k digits.
Subsequently, yi’s or zi’s contribute at least 1 for each of the last k digits. The truth
assignment does satisfy φ.

Ming-Hsien Tsai (IM@NTU) Time Complexity Spring 2019 59 / 59

	Measuring Complexity
	The Class P
	The Class NP
	NP-Completeness
	Additional NP-Complete Problems

