Theory of Computing Selected Topics

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Ming-Hsien Tsai (IM@NTU)

Selected Topics

Spring 2019 1 / 18

Decidability of Logical Theories

• Consider the following mathematical statements over integers:

- $(a, b, c, n[(a, b, c > 0 \land n > 2) \rightarrow a^n + b^n \neq c^n]; and$
- In words, they are
 - "there are infinitely many prime numbers."
 - "the equation aⁿ + bⁿ = cⁿ does not have non-trivial solution when n > 2." (Fermat's last theorem)
 - there are infinitely many twin primes."
- Would it be wonderful if we could check whether a given mathematical statement is true ?

▶ < 프 ▶ < 프 ▶

A Language of True Mathematical Statements

- As usual, we define a language for mathematical statements.
- Consider the following alphabet

$$\{\wedge, \lor, \neg, (,), [,], \forall, x, \exists, R_1, \ldots, R_k\}$$

- \land, \lor, \neg are <u>Boolean opearations</u>;
- (and) are parentheses;
- \forall and \exists are quantifiers;
- x denotes variables;
 - * x_i is denoted by $\underbrace{x \cdots x}_{i}$.
- R_1, \ldots, R_k are relations.

A Language of True Mathematical Statements

- A string of the form $R_i(x_1, \ldots, x_j)$ is an <u>atomic formula</u> with <u>arity</u> *j*.
- A <u>well-formed formula</u> is defined as follows.
 - An atomic formula a well-formed;
 - If φ₁ and φ₂ are well-formed, φ₁ ∧ φ₂, φ₁ ∨ φ₂, and ¬φ₁ are well-formed; and
 - ▶ $\exists x_i[\phi_1]$ and $\forall x_i[\phi_1]$ are wellformed if ϕ_1 is well-formed.
- A formula is in prenex normal form if its quantifiers appear first.
 - Any formula can be rewritten in prenex normal form.
- We only consider formula in prenex normal form.
- A variable not bound by any quantifier is a <u>free</u> variable.
- A formula without free variables is a sentence or statement.
- Examples.
 - $R_1(x_1) \wedge R_2(x_1, x_2, x_3)$ (or $R_1(x) \wedge R_2(x, xx, xxx)$)
 - $\forall x_1[R_1(x_1) \land R_2(x_1, x_2, x_3)]$
 - $\forall x_1 \exists x_2 \exists x_3 [R_1(x_1) \land R_2(x_1, x_2, x_3)]$

< □ > < □ > < □ > < □ >

- A <u>universe</u> is where the variables take values.
- A <u>model</u> (or <u>interpretation</u>, <u>structure</u>) consists of a universe and an assignment of relations to relation symbols.
- Formally, a model $\mathcal{M} = (U, P_1, \dots, P_k)$ consists of a universe U and relations P_i assigned to symbols R_i ($i = 1, \dots, k$).
- If ϕ is true in a model \mathcal{M} , \mathcal{M} is a model of ϕ .
- The <u>theory</u> of a model \mathcal{M} (written Th(\mathcal{M})) is the collection of true sentences in \mathcal{M} .

- Consider $\mathcal{M}_1 = (\mathbb{N}, \leq)$.
- Let ϕ be the sentence $\forall x_1 \forall x_2 [R_1(x_1, x_2) \lor R_1(x_2, x_1)]$.
- ϕ is true in \mathcal{M}_1 .
 - We assign the relation \leq to the symbol R_1 .
- \mathcal{M}_1 is a model of ϕ .
- $\phi \in \operatorname{Th}(\mathcal{M}_1)$.
- For simplicity, we will also write ϕ as $\forall x_1 \forall x_2 [x_1 \le x_2 \lor x_2 \le x_1]$.
- Now consider $\mathcal{M}'_1 = (\mathbb{N}, <).$
- Then ϕ is not true in \mathcal{M}'_1 .

- Define a 3-ary relation $PLUS = \{(a, b, c) : a + b = c\}.$
- Consider $\mathcal{M}_2 = (\mathbb{R}, PLUS)$.
- Let ψ be the sentence $\forall x_1 \exists x_2 [R_1(x_2, x_2, x_1)]$ (or $\forall x_1 \exists x_2 [x_2 + x_2 = x_1]$).
- \mathcal{M}_2 is a model of ψ .
- $\psi \in \mathrm{Th}(\mathcal{M}_2).$
- Consider $\mathcal{M}'_2 = (\mathbb{Z}, PLUS)$.
- \mathcal{M}'_2 is not a model of ψ .

Automatic Mathematics

- Let \mathcal{M} be a model.
- Th(\mathcal{M}) is a language.
 - ► It is a set consisting of true sentences in *M*.
- Define a 3-ary relation $TIMES = \{(a, b, c) : a \times b = c\}.$
- Define a 3-ary relation $EXP = \{(a, b, c) : a^b = c\}.$
- Consider the model (N, >, *PLUS*, *TIMES*, *EXP*).
- Let
 - ϕ_1 be $\forall q \exists p \forall x \forall y [p > q \land (x > 1 \land y > 1 \rightarrow \neg TIMES(x, y, p))].$
 - $\phi_2 \text{ be } \forall a \forall b \forall c \forall n \forall p \forall q \forall r [a > 0 \land b > 0 \land c > 0 \land n > 2 \land EXP(a, n, p) \land EXP(b, n, q) \land EXP(c, n, r) \rightarrow \neg PLUS(p, q, r)]$
 - ▶ ϕ_3 be $\forall q \exists p \forall x \forall y \forall z [p > q \land x > 1 \land y > 1 \land TIMES(x, y, z) \rightarrow (\neg(z = p) \land \neg PLUS(p, 2, z))]$
- We know $\phi_1, \phi_2 \in \text{Th}(\mathbb{N}, >, PLUS, TIMES, EXP)$.
- If the membership problem for Th(ℕ, >, *PLUS*, *TIMES*, *EXP*) is decidable, we can solve the twin prime conjecture automatically!

• Consider the alphabet

$$\Sigma_{3} = \left\{ \left[\begin{array}{c} 0\\0\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\1 \end{array} \right], \left[\begin{array}{c} 0\\1\\0 \end{array} \right], \left[\begin{array}{c} 0\\1\\1 \end{array} \right], \left[\begin{array}{c} 1\\1\\1 \end{array} \right], \left[\begin{array}{c} 1\\0\\0 \end{array} \right], \left[\begin{array}{c} 1\\0\\1 \end{array} \right], \left[\begin{array}{c} 1\\1\\0 \end{array} \right], \left[\begin{array}{c} 1\\1\\1 \end{array} \right] \right\} \right\}$$

- A string over Σ_3 represents a triple of natural numbers.
 - $\bullet \begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \text{ represents } (1,3,5).$
- A language in Σ_3^* therefore represents a relation with arity 3.
- We now show *PLUS* is represented by a regular language over Σ_3^* .
 - Finite automata can count after all!

Addition with Finite Automata

We first represent binary numbers in the reverse order, construct the finite automaton, then reverse its transitions.

$\operatorname{Th}(\mathbb{N},+)$ is Decidable

Theorem 2

 $Th(\mathbb{N},+)$ is decidable.

Proof.

Let $\phi = Q_1 x_1 Q_2 x_2 \cdots Q_l x_l[\psi]$ be a sentence where Q_i represents \exists or \forall (i = 1, ..., l) and ψ is a formula without quantifiers. Define $\phi_i = Q_{i+1} x_{i+1} Q_{i+2} x_{i+2} \cdots Q_l x_l[\psi]$. Note that $\phi_0 = \phi$, $\phi_l = \psi$ and ϕ_i has i free variables. For each i, consider column vectors of size i:

$$\Sigma_{i} = \left\{ \left[\begin{array}{c} 0\\ \vdots\\ 0\\ 0 \end{array} \right], \left[\begin{array}{c} 0\\ \vdots\\ 0\\ 1 \end{array} \right], \left[\begin{array}{c} 0\\ \vdots\\ 1\\ 0 \end{array} \right], \left[\begin{array}{c} 0\\ \vdots\\ 1\\ 0 \end{array} \right], \left[\begin{array}{c} 0\\ \vdots\\ 1\\ 1 \end{array} \right], \dots, \left[\begin{array}{c} 1\\ \vdots\\ 1\\ 1 \end{array} \right] \right\} \right\}$$

We construct a finite automaton A_i which recognizes an *i*-ary relation such that $(x_1, x_2, ..., x_i) \in L(A_i)$ iff $\phi_i(x_1, x_2, ..., x_i)$ is true. A_l is easy. In Th $(\mathbb{N}, +)$, atomic formulae are generalized *PLUS* in Lemma 1. A_l is obtained through Boolean operations.

(日)

$\operatorname{Th}(\mathbb{N},+)$ is Decidable

Proof (cont'd).

Assume $A_{i+1} = (\Sigma_{i+1}, Q, \delta, q, F)$ for $\phi_{i+1}(x_1, x_2, \dots, x_l)$ is available. Consider $\phi_i = \exists x_{i+1}\phi_{i+1}$. Let $A_i = (\Sigma_i, Q \cup \{q'\}, \delta', q', F)$ where

$$\delta'(r, \begin{bmatrix} b_1 \\ \vdots \\ b_i \end{bmatrix}) = \delta(r, \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ 0 \end{bmatrix}) \cup \delta(r, \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ 1 \end{bmatrix}) \quad \text{if } r, s \in Q \text{ (guess the quantified bit)}$$
$$\delta'(q', \epsilon) = \delta(q, \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}) \cup \delta(q, \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}) \quad \text{(guess the leading bit)}$$

Clearly, $(a_1, \ldots, a_i) \in L(A_i)$ iff there is an a_{i+1} such that $(a_1, \ldots, a_i, a_{i+1}) \in L(A_{i+1})$. For $\phi_i = \forall x_{i+1}\phi_{i+1}$, we construct A_i for $\neg \exists x_{i+1} \neg \phi_{i+1}$. To check if ϕ is true, we check if $\epsilon \in L(A_0)$. If $\epsilon \in L(A_0)$, the algorithm accepts ϕ ; if $\epsilon \notin L(A_0)$, the algorithm rejects ϕ .

$\operatorname{Th}(\mathbb{N},+,\times)$ is Undecidable

Lemma 3

Let *M* be a Turing machine and *w* a string. We construct a formula $\phi_{M,w}(x)$ in the language of $(\mathbb{N}, +, \times)$ such that $\exists x \phi_{M,w}(x)$ is true iff *M* accepts *w*.

Proof (sketch).

 $\phi_{M,w}(x)$ denotes that x is an accepting computation history of M on w. We use a (very) large natural number to represent a configuration. For instance, $u_1u_2 \cdots u_kq_iv_1v_2 \cdots v_l$ is represented by $p_1^{u_1} \cdots p_k^{u_k} p_{k+1}^{|\Sigma|+i} p_{k+2}^{v_1} \cdots p_{k+l+1}^{v_l}$ where p_i is the *i*-th prime number.

Theorem 4

 $Th(\mathbb{N}, +, \times)$ is undecidable.

Proof.

Recall

 $A_{\text{TM}} = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts } w \}$

is undecidable. We give a reduction from A_{TM} to $\text{Th}(\mathbb{N}, +, \times)$. On input $\langle M, w \rangle$, the reduction outputs $\exists x \phi_{M,w}(x)$. Then $\langle M, w \rangle \in A_{\text{TM}}$ iff $\exists x \phi_{M,w}(x)$.

Ming-Hsien Tsai (IM@NTU)

Selected Topics

- Since Th(ℕ, +) is decidable, one can check any formula in the language of (ℕ, +) is true <u>automatically</u>.
 - ▶ Whenever we have a conjecture in the language of (ℕ, +), we just run a program to see whether the conjecture is true of not.
 - Doing mathematics cannot be easier.
- Unfortunately, Th(ℕ, +, ×) is undecidable. We cannot prove or disprove a conjecture fully automatically.
 - Doing mathematics needs intelligence.

ト 4 国 ト 4 国 ト

- A formal proof π of a statement ϕ is a sequence of statements $S_1, \overline{S_2, \ldots, S_l} = \phi$ such that each S_i "follows" from $S_1, S_2, \ldots, S_{i-1}$ and axioms about numbers.
 - We can give a mathematical definition of formal proofs.
 - To learn more about it, take a logic course or go to FLOLAC summer school.
- For our purposes, it suffices to know the following properties about formal proofs:
 - The correctness of a proof of a statement can be checked by a machine.
 - ★ Formally, { $\langle \phi, \pi \rangle$: π is a proof of ϕ } is decidable.
 - 2 The system of proofs is <u>sound</u>.

★ That is, if a statement is provable, it is true.

Theorem 5

The collection of provable statements in $Th(\mathbb{N}, +, \times)$ *is Turing-recognizable.*

Proof.

Consider

- P ="On input ϕ :

② Check if *s* is a proof of ϕ by the first property of formal proofs.

- **1** If yes, accept ϕ ;
- **2** If no, $s \leftarrow$ the next string.

Go to step 2."

Theorem 6

Some true statement in $Th(\mathbb{N}, +, \times)$ *is not provable.*

Proof.

Suppose not. The following TM decides $Th(\mathbb{N}, +, \times)$: $G = "On input \phi$:

- **0** Run *P* (Theorem 5) on ϕ and $\neg \phi$ in parallel.
- **2** If *P* accepts ϕ , accept.
- **③** If *P* accepts $\neg \phi$, reject."

Note that either ϕ or $\neg \phi$ is true. Hence either ϕ or $\neg \phi$ is provable by assumption. Thus *P* will accept either ϕ or $\neg \phi$. If *P* accepts ϕ , ϕ is true; if *P* accepts $\neg \phi$, ϕ is false (the second property of formal proofs). Thus *G* decides Th($\mathbb{N}, +, \times$). A contradiction to Theorem 4.

イロト イ理ト イヨト イヨト

An Example

Assume a TM can obtain a copy of its own description (via recursion theorem).

Theorem 7

The sentence $\psi_{unprovable}$ *as described in the proof, is unprovable.*

Proof.

Let *S* be a TM that operates as follows.

- S = "On any input:
 - **(**) Obtain own description $\langle S \rangle$ via the recursion theorem.
 - **2** Construct the sentence $\psi = \neg \exists x [\phi_{S,0}(x)]$, using Lemma 3.
 - S Run algorithm *P* from the proof of Theorem 5.
 - If stage 3 accepts, accept."

< ロト < 同

▶ < Ξ >