Theory of Computing Selected Topics

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019
(original created by Bow-Yaw Wang)

Decidability of Logical Theories

- Consider the following mathematical statements over integers:
(1) $\forall q \exists p \forall x, y[p>q \wedge(x, y>1 \rightarrow x y \neq p)]$
(2) $\forall a, b, c, n\left[(a, b, c>0 \wedge n>2) \rightarrow a^{n}+b^{n} \neq c^{n}\right]$; and
(3) $\forall q \exists p \forall x, y[p>q \wedge x, y>1 \rightarrow(x y \neq p \wedge x y \neq p+2)]$.
- In words, they are
(1) "there are infinitely many prime numbers."
(2) "the equation $a^{n}+b^{n}=c^{n}$ does not have non-trivial solution when $n>2$." (Fermat's last theorem)
(3) "there are infinitely many twin primes."
- Would it be wonderful if we could check whether a given mathematical statement is true?

A Language of True Mathematical Statements

- As usual, we define a language for mathematical statements.
- Consider the following alphabet

$$
\left\{\wedge, \vee, \neg,(,),[,], \forall, x, \exists, R_{1}, \ldots, R_{k}\right\}
$$

- \wedge, \vee, \neg are Boolean opearations;
- (and) are parentheses;
- \forall and \exists are quantifiers;
- x denotes variables;
$\star x_{i}$ is denoted by $\underbrace{x \cdots x}_{i}$.
- R_{1}, \ldots, R_{k} are relations.

A Language of True Mathematical Statements

- A string of the form $R_{i}\left(x_{1}, \ldots, x_{j}\right)$ is an atomic formula with arity j.
- A well-formed formula is defined as follows.
- An atomic formula a well-formed;
- If ϕ_{1} and ϕ_{2} are well-formed, $\phi_{1} \wedge \phi_{2}, \phi_{1} \vee \phi_{2}$, and $\neg \phi_{1}$ are well-formed; and
- $\exists x_{i}\left[\phi_{1}\right]$ and $\forall x_{i}\left[\phi_{1}\right]$ are wellformed if ϕ_{1} is well-formed.
- A formula is in prenex normal form if its quantifiers appear first.
- Any formula can be rewritten in prenex normal form.
- We only consider formula in prenex normal form.
- A variable not bound by any quantifier is a free variable.
- A formula without free variables is a sentence or statement.
- Examples.
- $R_{1}\left(x_{1}\right) \wedge R_{2}\left(x_{1}, x_{2}, x_{3}\right)\left(\right.$ or $\left.R_{1}(x) \wedge R_{2}(x, x x, x x x)\right)$
- $\forall x_{1}\left[R_{1}\left(x_{1}\right) \wedge R_{2}\left(x_{1}, x_{2}, x_{3}\right)\right]$
- $\forall x_{1} \exists x_{2} \exists x_{3}\left[R_{1}\left(x_{1}\right) \wedge R_{2}\left(x_{1}, x_{2}, x_{3}\right)\right]$

A Language of True Mathematical Statements

- A universe is where the variables take values.
- A model (or interpretation, structure) consists of a universe and an assignment of relations to relation symbols.
- Formally, a model $\mathcal{M}=\left(U, P_{1}, \ldots, P_{k}\right)$ consists of a universe U and relations P_{i} assigned to symbols $R_{i}(i=1, \ldots, k)$.
- If ϕ is true in a model \mathcal{M}, \mathcal{M} is a model of ϕ.
- The theory of a model $\mathcal{M}($ written $\operatorname{Th}(\mathcal{M})$) is the collection of true sentences in \mathcal{M}.

Examples

- Consider $\mathcal{M}_{1}=(\mathbb{N}, \leq)$.
- Let ϕ be the sentence $\forall x_{1} \forall x_{2}\left[R_{1}\left(x_{1}, x_{2}\right) \vee R_{1}\left(x_{2}, x_{1}\right)\right]$.
- ϕ is true in \mathcal{M}_{1}.
- We assign the relation \leq to the symbol R_{1}.
- \mathcal{M}_{1} is a model of ϕ.
- $\phi \in \operatorname{Th}\left(\mathcal{M}_{1}\right)$.
- For simplicity, we will also write ϕ as $\forall x_{1} \forall x_{2}\left[x_{1} \leq x_{2} \vee x_{2} \leq x_{1}\right]$.
- Now consider $\mathcal{M}_{1}^{\prime}=(\mathbb{N},<)$.
- Then ϕ is not true in \mathcal{M}_{1}^{\prime}.

Examples

- Define a 3-ary relation PLUS $=\{(a, b, c): a+b=c\}$.
- Consider $\mathcal{M}_{2}=(\mathbb{R}$, PLUS $)$.
- Let ψ be the sentence $\forall x_{1} \exists x_{2}\left[R_{1}\left(x_{2}, x_{2}, x_{1}\right)\right]$ (or $\left.\forall x_{1} \exists x_{2}\left[x_{2}+x_{2}=x_{1}\right]\right)$.
- \mathcal{M}_{2} is a model of ψ.
- $\psi \in \operatorname{Th}\left(\mathcal{M}_{2}\right)$.
- Consider $\mathcal{M}_{2}^{\prime}=(\mathbb{Z}$, PLUS $)$.
- \mathcal{M}_{2}^{\prime} is not a model of ψ.

Automatic Mathematics

- Let \mathcal{M} be a model.
- $\operatorname{Th}(\mathcal{M})$ is a language.
- It is a set consisting of true sentences in \mathcal{M}.
- Define a 3-ary relation TIMES $=\{(a, b, c): a \times b=c\}$.
- Define a 3-ary relation EXP $=\left\{(a, b, c): a^{b}=c\right\}$.
- Consider the model ($\mathbb{N},>$, PLUS, TIMES, EXP).
- Let
- ϕ_{1} be $\forall q \exists p \forall x \forall y[p>q \wedge(x>1 \wedge y>1 \rightarrow \neg \operatorname{TIMES}(x, y, p))]$.
- ϕ_{2} be $\forall a \forall b \forall c \forall n \forall p \forall q \forall r[a>0 \wedge b>0 \wedge c>0 \wedge n>$
$2 \wedge \operatorname{EXP}(a, n, p) \wedge \operatorname{EXP}(b, n, q) \wedge \operatorname{EXP}(c, n, r) \rightarrow \neg \operatorname{PLUS}(p, q, r)]$
- ϕ_{3} be $\forall q \exists p \forall x \forall y \forall z[p>q \wedge x>1 \wedge y>1 \wedge \operatorname{TIMES}(x, y, z) \rightarrow(\neg(z=$ p) $\wedge \neg \operatorname{PLUS}(p, 2, z))]$
- We know $\phi_{1}, \phi_{2} \in \operatorname{Th}(\mathbb{N},>$, PLUS, TIMES, EXP $)$.
- If the membership problem for $\operatorname{Th}(\mathbb{N},>, P L U S, T I M E S, E X P)$ is decidable, we can solve the twin prime conjecture automatically!

Addition with Finite Automata

- Consider the alphabet

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

- A string over Σ_{3} represents a triple of natural numbers.
- $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ represents $(1,3,5)$.
- A language in Σ_{3}^{*} therefore represents a relation with arity 3 .
- We now show PLUS is represented by a regular language over Σ_{3}^{*}.
- Finite automata can count after all!

Addition with Finite Automata

Lemma 1

PLUS is regular.
Proof.

We first represent binary numbers in the reverse order, construct the finite automaton, then reverse its transitions.

$$
\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { represents }(3,11,14) \in P L U S!
$$

$\operatorname{Th}(\mathbb{N},+)$ is Decidable

Theorem 2

$\operatorname{Th}(\mathbb{N},+)$ is decidable.

Proof.

Let $\phi=\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \cdots \mathrm{Q}_{l} x_{l}[\psi]$ be a sentence where Q_{i} represents \exists or $\forall(i=1, \ldots, l)$ and ψ is a formula without quantifiers. Define $\phi_{i}=\mathrm{Q}_{i+1} x_{i+1} \mathrm{Q}_{i+2} x_{i+2} \cdots \mathrm{Q}_{l} x_{l}[\psi]$. Note that $\phi_{0}=\phi, \phi_{l}=\psi$ and ϕ_{i} has i free variables. For each i, consider column vectors of size i :

$$
\Sigma_{i}=\left\{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1
\end{array}\right]\right\}
$$

We construct a finite automaton A_{i} which recognizes an i-ary relation such that $\left(x_{1}, x_{2}, \ldots, x_{i}\right) \in L\left(A_{i}\right)$ iff $\phi_{i}\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ is true.
A_{l} is easy. In $\operatorname{Th}(\mathbb{N},+)$, atomic formulae are generalized PLUS in Lemma 1. A_{l} is obtained through Boolean operations.

$\operatorname{Th}(\mathbb{N},+)$ is Decidable

Proof (cont'd).

Assume $A_{i+1}=\left(\Sigma_{i+1}, Q, \delta, q, F\right)$ for $\phi_{i+1}\left(x_{1}, x_{2}, \ldots, x_{l}\right)$ is available. Consider $\phi_{i}=\exists x_{i+1} \phi_{i+1}$. Let $A_{i}=\left(\Sigma_{i}, Q \cup\left\{q^{\prime}\right\}, \delta^{\prime}, q^{\prime}, F\right)$ where

$$
\begin{aligned}
\delta^{\prime}\left(r,\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{i}
\end{array}\right]\right) & =\delta\left(r,\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
0
\end{array}\right]\right) \cup \delta\left(r,\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
1
\end{array}\right]\right) \quad \text { if } r, s \in Q \text { (guess the quantified bit) } \\
\delta^{\prime}\left(q^{\prime}, \epsilon\right) & =\delta\left(q,\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0
\end{array}\right]\right) \cup \delta\left(q,\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]\right) \quad \text { (guess the leading bit) }
\end{aligned}
$$

Clearly, $\left(a_{1}, \ldots, a_{i}\right) \in L\left(A_{i}\right)$ iff there is an a_{i+1} such that $\left(a_{1}, \ldots, a_{i}, a_{i+1}\right) \in L\left(A_{i+1}\right)$.
For $\phi_{i}=\forall x_{i+1} \phi_{i+1}$, we construct A_{i} for $\neg \exists x_{i+1} \neg \phi_{i+1}$.
To check if ϕ is true, we check if $\epsilon \in L\left(A_{0}\right)$. If $\epsilon \in L\left(A_{0}\right)$, the algorithm accepts ϕ; if $\epsilon \notin L\left(A_{0}\right)$, the algorithm rejects ϕ.

$\operatorname{Th}(\mathbb{N},+, x)$ is Undecidable

Lemma 3

Let M be a Turing machine and w a string. We construct a formula $\phi_{M, w}(x)$ in the language of $(\mathbb{N},+, \times)$ such that $\exists x \phi_{M, w}(x)$ is true iff M accepts w.

Proof (sketch).

$\phi_{M, w}(x)$ denotes that x is an accepting computation history of M on w. We use a (very) large natural number to represent a configuration. For instance, $u_{1} u_{2} \cdots u_{k} q_{i} v_{1} v_{2} \cdots v_{l}$ is represented by $p_{1}^{u_{1}} \cdots p_{k}^{u_{k}} p_{k+1}^{|\Sigma|+i} p_{k+2}^{v_{1}} \cdots p_{k+l+1}^{v_{l}}$ where p_{i} is the i-th prime number.

Theorem 4

$\operatorname{Th}(\mathbb{N},+, \times)$ is undecidable.

Proof.

Recall

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle: M \text { is a TM and } M \text { accepts } w\}
$$

is undecidable. We give a reduction from $A_{\text {TM }}$ to $\operatorname{Th}(\mathbb{N},+, \times)$. On input $\langle M, w\rangle$, the reduction outputs $\exists x \phi_{M, w}(x)$. Then $\langle M, w\rangle \in A_{\text {TM }}$ iff $\exists x \phi_{M, w}(x)$.

Philosophical Consequences

- Since $\operatorname{Th}(\mathbb{N},+)$ is decidable, one can check any formula in the language of $(\mathbb{N},+)$ is true automatically.
- Whenever we have a conjecture in the language of $(\mathbb{N},+)$, we just run a program to see whether the conjecture is true of not.
- Doing mathematics cannot be easier.
- Unfortunately, $\operatorname{Th}(\mathbb{N},+, \times)$ is undecidable. We cannot prove or disprove a conjecture fully automatically.
- Doing mathematics needs intelligence.

Formal Proofs

- A formal proof π of a statement ϕ is a sequence of statements $S_{1}, S_{2}, \ldots, S_{l}=\phi$ such that each S_{i} "follows" from $S_{1}, S_{2}, \ldots, S_{i-1}$ and axioms about numbers.
- We can give a mathematical definition of formal proofs.
- To learn more about it, take a logic course or go to FLOLAC summer school.
- For our purposes, it suffices to know the following properties about formal proofs:
(1) The correctness of a proof of a statement can be checked by a machine.
\star Formally, $\{\langle\phi, \pi\rangle: \pi$ is a proof of $\phi\}$ is decidable.
(2) The system of proofs is sound.
\star That is, if a statement is provable, it is true.

Gödel's Incompleteness Theorem

Theorem 5

The collection of provable statements in $\operatorname{Th}(\mathbb{N},+, \times)$ is Turing-recognizable.

Proof.

Consider
$P=$ "On input ϕ :
(1) $s \leftarrow \epsilon$.
(2) Check if s is a proof of ϕ by the first property of formal proofs.
(1) If yes, accept ϕ;
(2) If no, $s \leftarrow$ the next string.
(Go to step 2."

Gödel's Incompleteness Theorem

Theorem 6

Some true statement in $\operatorname{Th}(\mathbb{N},+, \times)$ is not provable.

Proof.

Suppose not. The following TM decides $\operatorname{Th}(\mathbb{N},+, \times)$:
$G=$ "On input ϕ :
(1) Run P (Theorem 5) on ϕ and $\neg \phi$ in parallel.
(2) If P accepts ϕ, accept.
(3) If P accepts $\neg \phi$, reject."

Note that either ϕ or $\neg \phi$ is true. Hence either ϕ or $\neg \phi$ is provable by assumption. Thus P will accept either ϕ or $\neg \phi$. If P accepts ϕ, ϕ is true; if P accepts $\neg \phi, \phi$ is false (the second property of formal proofs). Thus G decides $\operatorname{Th}(\mathbb{N},+, \times)$. A contradiction to Theorem 4.

An Example

Assume a TM can obtain a copy of its own description (via recursion theorem).

Theorem 7

The sentence $\psi_{\text {unprovable }}$ as described in the proof, is unprovable.

Proof.

Let S be a TM that operates as follows.
$S=$ "On any input:
(1) Obtain own description $\langle S\rangle$ via the recursion theorem.
(2) Construct the sentence $\psi=\neg \exists x\left[\phi_{S, 0}(x)\right]$, using Lemma 3 .
(3) Run algorithm P from the proof of Theorem 5 .
(9) If stage 3 accepts, accept."

