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Decidability of Logical Theories

Consider the following mathematical statements over integers:
1 ∀q∃p∀x, y[p > q ∧ (x, y > 1→ xy 6= p)]
2 ∀a, b, c,n[(a, b, c > 0 ∧ n > 2)→ an + bn 6= cn]; and
3 ∀q∃p∀x, y[p > q ∧ x, y > 1→ (xy 6= p ∧ xy 6= p + 2)].

In words, they are
1 “there are infinitely many prime numbers.”
2 “the equation an + bn = cn does not have non-trivial solution when

n > 2.” (Fermat’s last theorem)
3 “there are infinitely many twin primes.”

Would it be wonderful if we could check whether a given
mathematical statement is true ?
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A Language of True Mathematical Statements

As usual, we define a language for mathematical statements.
Consider the following alphabet

{∧,∨,¬, (, ), [, ],∀, x,∃,R1, . . . ,Rk}

I ∧,∨,¬ are Boolean opearations;
I ( and ) are parentheses;
I ∀ and ∃ are quantifiers;
I x denotes variables;

F xi is denoted by x · · · x︸ ︷︷ ︸
i

.

I R1, . . . ,Rk are relations.
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A Language of True Mathematical Statements

A string of the form Ri(x1, . . . , xj) is an atomic formula with arity j.
A well-formed formula is defined as follows.

I An atomic formula a well-formed;
I If φ1 and φ2 are well-formed, φ1 ∧ φ2, φ1 ∨ φ2, and ¬φ1 are

well-formed; and
I ∃xi[φ1] and ∀xi[φ1] are wellformed if φ1 is well-formed.

A formula is in prenex normal form if its quantifiers appear first.
I Any formula can be rewritten in prenex normal form.

We only consider formula in prenex normal form.
A variable not bound by any quantifier is a free variable.
A formula without free variables is a sentence or statement.
Examples.

I R1(x1) ∧ R2(x1, x2, x3) (or R1(x) ∧ R2(x, xx, xxx))
I ∀x1[R1(x1) ∧ R2(x1, x2, x3)]
I ∀x1∃x2∃x3[R1(x1) ∧ R2(x1, x2, x3)]
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A Language of True Mathematical Statements

A universe is where the variables take values.
A model (or interpretation, structure) consists of a universe and
an assignment of relations to relation symbols.
Formally, a modelM = (U,P1, . . . ,Pk) consists of a universe U
and relations Pi assigned to symbols Ri (i = 1, . . . , k).
If φ is true in a modelM,M is a model of φ.
The theory of a modelM (written Th(M)) is the collection of true
sentences inM.
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Examples

ConsiderM1 = (N,≤).
Let φ be the sentence ∀x1∀x2[R1(x1, x2) ∨ R1(x2, x1)].
φ is true inM1.

I We assign the relation ≤ to the symbol R1.

M1 is a model of φ.
φ ∈ Th(M1).
For simplicity, we will also write φ as ∀x1∀x2[x1 ≤ x2 ∨ x2 ≤ x1].
Now considerM′1 = (N, <).
Then φ is not true inM′1.
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Examples

Define a 3-ary relation PLUS = {(a, b, c) : a + b = c}.
ConsiderM2 = (R,PLUS).
Let ψ be the sentence ∀x1∃x2[R1(x2, x2, x1)] (or
∀x1∃x2[x2 + x2 = x1]).
M2 is a model of ψ.
ψ ∈ Th(M2).
ConsiderM′2 = (Z,PLUS).
M′2 is not a model of ψ.
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Automatic Mathematics

LetM be a model.
Th(M) is a language.

I It is a set consisting of true sentences inM.

Define a 3-ary relation TIMES = {(a, b, c) : a× b = c}.
Define a 3-ary relation EXP = {(a, b, c) : ab = c}.
Consider the model (N, >,PLUS,TIMES,EXP).
Let

I φ1 be ∀q∃p∀x∀y[p > q ∧ (x > 1 ∧ y > 1→ ¬TIMES(x, y, p))].
I φ2 be ∀a∀b∀c∀n∀p∀q∀r[a > 0 ∧ b > 0 ∧ c > 0 ∧ n >

2 ∧ EXP(a,n, p) ∧ EXP(b,n, q) ∧ EXP(c,n, r)→ ¬PLUS(p, q, r)]
I φ3 be ∀q∃p∀x∀y∀z[p > q ∧ x > 1 ∧ y > 1 ∧ TIMES(x, y, z)→ (¬(z =

p) ∧ ¬PLUS(p, 2, z))]

We know φ1, φ2 ∈ Th(N, >,PLUS,TIMES,EXP).
If the membership problem for Th(N, >,PLUS,TIMES,EXP) is
decidable, we can solve the twin prime conjecture automatically!
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Addition with Finite Automata

Consider the alphabet

Σ3 =


 0

0
0

 ,
 0

0
1

 ,
 0

1
0

 ,
 0

1
1

 ,
 1

0
0

 ,
 1

0
1

 ,
 1

1
0

 ,
 1

1
1


A string over Σ3 represents a triple of natural numbers.

I

 0
0
1

 0
1
0

 1
1
1

 represents (1, 3, 5).

A language in Σ∗3 therefore represents a relation with arity 3.
We now show PLUS is represented by a regular language over Σ∗3.

I Finite automata can count after all!
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Addition with Finite Automata

Lemma 1
PLUS is regular.

Proof.

 0
0
0

 ,

 0
1
1

 ,

 1
0
1

  1
0
0

 ,

 0
1
0

 ,

 1
1
1



 1
1
0



 0
0
1


We first represent binary numbers in the reverse order, construct the
finite automaton, then reverse its transitions. 0

1
1

 0
0
1

 1
1
1

 1
1
0

 represents (3, 11, 14) ∈ PLUS!
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Th(N,+) is Decidable

Theorem 2
Th(N,+) is decidable.

Proof.
Let φ = Q1x1Q2x2 · · ·Qlxl[ψ] be a sentence where Qi represents ∃ or ∀ (i = 1, . . . , l) and
ψ is a formula without quantifiers. Define φi = Qi+1xi+1Qi+2xi+2 · · ·Qlxl[ψ]. Note that
φ0 = φ, φl = ψ and φi has i free variables. For each i, consider column vectors of size i:

Σi =




0
...
0
0

 ,


0
...
0
1

 ,


0
...
1
0

 ,


0
...
1
1

 , . . . ,


1
...
1
1




We construct a finite automaton Ai which recognizes an i-ary relation such that
(x1, x2, . . . , xi) ∈ L(Ai) iff φi(x1, x2, . . . , xi) is true.
Al is easy. In Th(N,+), atomic formulae are generalized PLUS in Lemma 1. Al is
obtained through Boolean operations.
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Th(N,+) is Decidable

Proof (cont’d).
Assume Ai+1 = (Σi+1,Q, δ, q, F) for φi+1(x1, x2, . . . , xl) is available. Consider
φi = ∃xi+1φi+1. Let Ai = (Σi,Q ∪ {q′}, δ′, q′, F) where

δ′(r,

 b1

...
bi

) = δ(r,


b1

...
bi

0

) ∪ δ(r,


b1

...
bi

1

) if r, s ∈ Q (guess the quantified bit)

δ′(q′, ε) = δ(q,


0
...
0
0

) ∪ δ(q,


0
...
0
1

) (guess the leading bit)

Clearly, (a1, . . . , ai) ∈ L(Ai) iff there is an ai+1 such that (a1, . . . , ai, ai+1) ∈ L(Ai+1).
For φi = ∀xi+1φi+1, we construct Ai for ¬∃xi+1¬φi+1.
To check if φ is true, we check if ε ∈ L(A0). If ε ∈ L(A0), the algorithm accepts φ; if
ε 6∈ L(A0), the algorithm rejects φ.
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Th(N,+,×) is Undecidable

Lemma 3
Let M be a Turing machine and w a string. We construct a formula φM,w(x) in the language of
(N,+,×) such that ∃xφM,w(x) is true iff M accepts w.

Proof (sketch).
φM,w(x) denotes that x is an accepting computation history of M on w. We use a (very)
large natural number to represent a configuration. For instance, u1u2 · · · ukqiv1v2 · · · vl

is represented by pu1
1 · · · p

uk
k p|Σ|+i

k+1 pv1
k+2 · · · p

vl
k+l+1 where pi is the i-th prime number.

Theorem 4
Th(N,+,×) is undecidable.

Proof.
Recall

ATM = {〈M,w〉 : M is a TM and M accepts w}
is undecidable. We give a reduction from ATM to Th(N,+,×). On input 〈M,w〉, the
reduction outputs ∃xφM,w(x). Then 〈M,w〉 ∈ ATM iff ∃xφM,w(x).
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Philosophical Consequences

Since Th(N,+) is decidable, one can check any formula in the
language of (N,+) is true automatically.

I Whenever we have a conjecture in the language of (N,+), we just
run a program to see whether the conjecture is true of not.

I Doing mathematics cannot be easier.
Unfortunately, Th(N,+,×) is undecidable. We cannot prove or
disprove a conjecture fully automatically.

I Doing mathematics needs intelligence.
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Formal Proofs

A formal proof π of a statement φ is a sequence of statements
S1,S2, . . . ,Sl = φ such that each Si “follows” from S1,S2, . . . ,Si−1
and axioms about numbers.

I We can give a mathematical definition of formal proofs.
I To learn more about it, take a logic course or go to FLOLAC

summer school.
For our purposes, it suffices to know the following properties
about formal proofs:

1 The correctness of a proof of a statement can be checked by a
machine.

F Formally, {〈φ, π〉 : π is a proof of φ} is decidable.
2 The system of proofs is sound.

F That is, if a statement is provable, it is true.
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Gödel’s Incompleteness Theorem

Theorem 5
The collection of provable statements in Th(N,+,×) is Turing-recognizable.

Proof.
Consider
P = “On input φ :

1 s← ε.
2 Check if s is a proof of φ by the first property of formal proofs.

1 If yes, accept φ;
2 If no, s← the next string.

3 Go to step 2.”
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Gödel’s Incompleteness Theorem

Theorem 6
Some true statement in Th(N,+,×) is not provable.

Proof.
Suppose not. The following TM decides Th(N,+,×):
G = “On input φ:

1 Run P (Theorem 5) on φ and ¬φ in parallel.
2 If P accepts φ, accept.
3 If P accepts ¬φ, reject.”

Note that either φ or ¬φ is true. Hence either φ or ¬φ is provable by
assumption. Thus P will accept either φ or ¬φ. If P accepts φ, φ is true;
if P accepts ¬φ, φ is false (the second property of formal proofs). Thus
G decides Th(N,+,×). A contradiction to Theorem 4.
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An Example

Assume a TM can obtain a copy of its own description (via recursion
theorem).

Theorem 7
The sentence ψunprovable as described in the proof, is unprovable.

Proof.
Let S be a TM that operates as follows.
S = “On any input:

1 Obtain own description 〈S〉 via the recursion theorem.
2 Construct the sentence ψ = ¬∃x[φS,0(x)], using Lemma 3.
3 Run algorithm P from the proof of Theorem 5.
4 If stage 3 accepts, accept.”
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