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Decidability of Logical Theories

o Consider the following mathematical statements over integers:
Q VaZpvx.ylp > g A (e y > 1 = xy #p)]
Q Va,b,c,nl(a,b,c>0An>2)—a" +b" #£"];and
Q VgV ylp >qgAxy>1— (xy £ApAxy #p+2)).
@ In words, they are
@ “there are infinitely many prime numbers.”
@ “the equation a" + b" = ¢" does not have non-trivial solution when
n > 2.” (Fermat’s last theorem)
© “there are infinitely many twin primes.”
@ Would it be wonderful if we could check whether a given
mathematical statement is true ?
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A Language of True Mathematical Statements

@ As usual, we define a language for mathematical statements.

@ Consider the following alphabet

{/\7\/7_'7(7)7 [7]7v7x737R17" . 7Rk}

» A,V,— are Boolean opearations;
» (and ) are parentheses;

» Vand J are quantifiers;

» x denotes variables;

* x;is denoted by x - - - x.

i

R4, ..., Ry are relations.

v
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A Language of True Mathematical Statements

A string of the form R;(x1, ..., xj) is an atomic formula with arity j.

A well-formed formula is defined as follows.
» An atomic formula a well-formed,;
» If ¢1 and ¢, are well-formed, ¢1 A ¢2, @1 V ¢, and —¢y are
well-formed; and
» Jx;[¢1] and Vx;[¢1] are wellformed if ¢; is well-formed.
A formula is in prenex normal form if its quantifiers appear first.
» Any formula can be rewritten in prenex normal form.

We only consider formula in prenex normal form.
A variable not bound by any quantifier is a free variable.

A formula without free variables is a sentence or statement.

Examples.
» Ry(x1) A Ro(x1,x2,x3) (or Ry(x) A Ra(x, xx, xx%))
> Vxq [Rl (x1) A Rz(.’)q, X2, X3)}
> Vx13dxodxs [Rl (xl) A Ry (xl, X2, X3)}
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A Language of True Mathematical Statements

A universe is where the variables take values.

A model (or interpretation, structure) consists of a universe and
an assignment of relations to relation symbols.

Formally, a model M = (U, Py, ..., Py) consists of a universe U
and relations P; assigned to symbols R; (i =1, ... k).

If ¢ is true in a model M, M is a model of ¢.

The theory of a model M (written Th(M)) is the collection of true
sentences in M.
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@ Consider M; = (N, <).
@ Let ¢ be the sentence Vx;Vx2[R1(x1,x2) V Ry(x2,x1)].
@ ¢ is true in M;.

» We assign the relation < to the symbol R;.

@ M, is a model of ¢.

@ ¢ € Th(M,).

e For simplicity, we will also write ¢ as Vx1Vxz[x; < xp V xp < x9].
@ Now consider M/ = (N, <).

@ Then ¢ is not true in M.
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@ Define a 3-ary relation PLUS = {(a,b,c) :a+b = c}.
e Consider M; = (R, PLUS).

@ Let ¢ be the sentence Vx;13x2[Rq(x2, x2,x1)] (or
Vax13xa[x2 4+ X2 = x1)).

@ M, is a model of .
VNS Th(./\/lz).
e Consider M/, = (Z,PLUS).

e My is not a model of 1.
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Automatic Mathematics

@ Let M be a model.
@ Th(M) is a language.
» Itis a set consisting of true sentences in M.
Define a 3-ary relation TIMES = {(a,b,c) : a x b = c}.
Define a 3-ary relation EXP = {(a,b,c) : a’ = c}.
Consider the model (N, >, PLUS, TIMES, EXP).
Let
> o1 beVqIpVaVylp > g A (x > 1Ay > 1 — =TIMES(x,y,p))].
> o be VaVbVcVnVpVgvria >0Ab>0Ac>0AnN >
2 NEXP(a,n,p) NEXP(b,n,q) N EXP(c,n,r) — —~PLUS(p, q,7)]
> ¢3 be VqIpVxVyVzlp > gAx > 1Ay > 1ATIMES(x,y,z) — (—(z =
p) A=PLUS(p,2,2))]
o We know ¢1, ¢» € Th(N, >, PLUS, TIMES, EXP).

@ If the membership problem for Th(N, >, PLUS, TIMES, EXP) is
decidable, we can solve the twin prime conjecture automatically!
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Addition with Finite Automata

@ Consider the alphabet

LGB

@ A string over X3 represents a triple of natural numbers.

0 0 1
» | 0 1 1 | represents (1,3,5).
1 0 1

@ A language in X therefore represents a relation with arity 3.
@ We now show PLUS is represented by a regular language over X3.
» Finite automata can count after all!
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Addition with Finite Automata

Lemma 1
PLUS is regular.

Proof.

et
HIHME @@{Q@DHHEHH

We first represent binary numbers in the reverse order, construct the
finite automaton, then reverse its transitions. L]

0 0 1 1
1 0 1 1 | represents (3,11,14) € PLUS!
1 1 1 0
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Th(N, +) is Decidable

Theorem 2
Th(N, +) is decidable.

Proof.

Let ¢ = Qix1Quxz - - - Qux;[t)] be a sentence where Q; represents JorV (i = 1,...,I) and
1 is a formula without quantifiers. Define ¢; = Q;1xi+1Qi2%it2 - - - Qixy[¢]. Note that
¢o = ¢, ¢ = ¥ and ¢; has i free variables. For each 7, consider column vectors of size i:

0 0 0 0 1
Z:i: ) ’ : ) ) )

0 0 1 1 1

0 1 0 1 1

We construct a finite automaton A; which recognizes an i-ary relation such that
(x1,x2,...,x) € L(A;) iff ¢i(x1,x2, . .., ;) is true.

A is easy. In Th(N, +), atomic formulae are generalized PLUS in Lemma 1. A; is
obtained through Boolean operations.
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Th(N, +) is Decidable

Proof (cont’d).

Assume Ajq1 = (Zi41,Q, 0,4, F) for ¢ip1(x1,x2,. .., %) is available. Consider
¢i = Hxi+1(;5,'+1. Let A; = (Ei, Q U {q,}, (5,, t]l,F) where

bl [ bl bl
(| |) = 8| * |)Ud(, ) ifr,s € Q (guess the quantified bit)

i bi i

& | o 1

[0 0

§(q,e) = 6@, YU d(yg, ) (guess the leading bit)
0 0
L O 1

Clearly, (a1, . ..,a;) € L(4;) iff there is an a;1;1 such that (a1, . . .,a;,4i41) € L(Aiq1).

For ¢; = Vxit10it1, we construct A; for —3x;11—¢i11.

To check if ¢ is true, we check if € € L(Ao). If € € L(Ay), the algorithm accepts ¢; if

€ ¢ L(Ao), the algorithm rejects ¢. O
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Th(N, 4, x) is Undecidable

Lemma 3

Let M be a Turing machine and w a string. We construct a formula ¢y, (x) in the language of
(N, 4, x) such that Ix¢m,(x) is true iff M accepts w.

Proof (sketch).

om0 (x) denotes that x is an accepting computation history of M on w. We use a (very)

large natural number to represent a configuration. For instance, uiuz - - - uxqiv102 - - - v

is represented by pi" - ptpi TPt , - - pil,,, Where p; is the i-th prime number.  [J

Theorem 4
Th(N, +, x) is undecidable.

Proof.
Recall
Arv = {(M,w) : Mis a TM and M accepts w}
is undecidable. We give a reduction from Ary to Th(N, +, x). On input (M, w), the
reduction outputs Ixpar(x). Then (M, w) € Aty iff Ixdn,w(x). O
e Topice



Philosophical Consequences

e Since Th(N, +) is decidable, one can check any formula in the
language of (N, +) is true automatically.
» Whenever we have a conjecture in the language of (N, +), we just
run a program to see whether the conjecture is true of not.
» Doing mathematics cannot be easier.
o Unfortunately, Th(N, +, x) is undecidable. We cannot prove or
disprove a conjecture fully automatically.
» Doing mathematics needs intelligence.
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Formal Proofs

@ A formal proof 7 of a statement ¢ is a sequence of statements
51,Sy,...,5 = ¢ such that each S; “follows” from 51, S»,...,5;_1
and axioms about numbers.

» We can give a mathematical definition of formal proofs.
» To learn more about it, take a logic course or go to FLOLAC
summer school.

@ For our purposes, it suffices to know the following properties
about formal proofs:

© The correctness of a proof of a statement can be checked by a
machine.
* Formally, {{¢, ) : 7 is a proof of ¢} is decidable.
@ The system of proofs is sound.

* That is, if a statement is provable, it is true.
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Godel’s Incompleteness Theorem

Theorem 5
The collection of provable statements in Th(N, +, x) is Turing-recognizable.

Proof.
Consider
P ="Oninput ¢ :
Q s+ e
@ Check if sis a proof of ¢ by the first property of formal proofs.

@ If yes, accept ¢;
@ Ifno, s < the next string.

@ Gotostep2.”
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Godel’s Incompleteness Theorem

Theorem 6

Some true statement in Th(N, +, x) is not provable.

Proof.
Suppose not. The following TM decides Th(N, +, x):
G = “On input ¢:

@ Run P (Theorem 5) on ¢ and —¢ in parallel.

@ If P accepts ¢, accept.

@ If P accepts —¢, reject.”

Note that either ¢ or —¢ is true. Hence either ¢ or —¢ is provable by
assumption. Thus P will accept either ¢ or —¢. If P accepts ¢, ¢ is true;
if P accepts —¢, ¢ is false (the second property of formal proofs). Thus
G decides Th(N, +, x). A contradiction to Theorem 4. O
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An Example

Assume a TM can obtain a copy of its own description (via recursion
theorem).
Theorem 7

The sentence Vyyprovavie A described in the proof, is unprovable.

Proof.

Let S be a TM that operates as follows.

S = “On any input:
@ Obtain own description (S) via the recursion theorem.
@ Construct the sentence ¢ = =3x[¢s o(x)], using Lemma 3.
@ Run algorithm P from the proof of Theorem 5.
Q If stage 3 accepts, accept.”

0J
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