Theory of Computing Reducibility

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Reducibility

- In mathematics, many problems are solved by "reduction."
- Recall the reduction from Eulerian path to Eulerian cycle.
 - ► Suppose *EC*(*G*) returns true iff *G* has a Eulerian cycle.
 - Let s, t be nodes of a graph G.
 - ▶ To check if there is a Eulerian path from *s* to *t* in *G*.
 - ► Construct a graph *G'* that is identical to *G* except an additional edge between *s* and *t*.
 - ▶ If EC(G') returns true, there is a Eulerian path from s to t.
 - ▶ If EC(G') returns false, there is no Eulerian path from s to t.
- Instead of inventing a new algorithm for finding Eulerian paths, we use EC(G) as a subroutine.
- We say the Eulerian path problem is <u>reduced</u> to the Eulerian cycle problem.

Reducibility

- Let us say *A* and *B* are two problems and *A* is reduced to *B*.
- If we solve *B*, we solve *A* as well.
 - ▶ If we solve the Eulerian cycle problem, we solve the Eulerian path problem.
- If we can't solve *A*, we can't solve *B*.
- To show a problem P is not decidable, it suffices to reduce A_{TM} to P.
- We will give examples in this chapter.

3 / 32

The Halting Problem for Turing Machines

- The halting problem is to test whether a TM *M* halts on a string *w*.
- As usual, we first give a language-theoretic formulation.

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ is a TM and } M \text{ halts on the input } w\}.$

Theorem 1

 $HALT_{TM}$ is undecidable.

Proof.

We would like to reduce the acceptance problem to the halting problem. Suppose a TM R decides $HALT_{TM}$. Consider S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

- Run TM R on the input $\langle M, w \rangle$.
- ② If R rejects, reject.
- **3** If R accepts, simulate M on w until it halts.
- If *M* accepts, accept; if *M* rejects, reject."

Emptiness Problem for Turing Machines

• Consider $E_{\text{TM}} = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem 2

E_{TM} is undecidable.

Proof.

We reduce the acceptance problem to the emptiness problem. Let the TM R decides E_{TM} . Consider

- Use $\langle M \rangle$ to construct $M_1 =$ "On input x:
 - If $x \neq w$, reject.
 - ② If x = w, run M on the input x. If M accepts x, accept."
- ② Run R on the input $\langle M_1 \rangle$.
- **1** If *R* accepts, reject; otherwise, accept."

Regularity Problem for Turing Machines

Consider

 $REGULAR_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}.$

Theorem 3

 $REGULAR_{TM}$ is undecidable.

Proof.

Let R be a TM deciding $REGULAR_{TM}$. Consider

- Use $\langle M \rangle$ to construct $M_2 =$ "On input x:
 - If x is of the form $0^n 1^n$, accept.
 - ② Otherwise, run *M* on the input *w*. If *M* accepts *w*, accepts."
- ② Run R on the input $\langle M_2 \rangle$.
- **1** If *R* accepts, accept; otherwise, reject."

Rice's Theorem

Theorem 4

Let P be a language consisting of TM descriptions such that

- **1** P is not trivial $(P \neq \emptyset)$ and there is a TM M with $\langle M \rangle \notin P$;
- 2 If $L(M_1) = L(M_2)$, $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$.

Then P is undecidable.

Proof.

Let *R* be a TM deciding *P*. Let T_{\emptyset} be a TM with $L(T_{\emptyset}) = \emptyset$. WLOG, assume $\langle T_{\emptyset} \rangle \notin P$. Moreover, pick a TM *T* with $\langle T \rangle \in P$. Consider

- **1** Use $\langle M \rangle$ to construct
 - M_w = "On input x:
 - Run *M* on *w*. If *M* halts and rejects, reject.
 - ② If M accepts w, run T on x."
- 2 Run R on $\langle M_w \rangle$.
- If R accepts, accept; otherwise, reject."

Language Equivalence Problem for Turing Machines

Consider

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TM's with } L(M_1) = L(M_2) \}.$$

Theorem 5

EQ_{TM} is undecidable.

Proof.

We reduce the emptiness problem to the language equivalence problem this time. Let the TM R decide EQ_{TM} and TM M_1 with $L(M_1) = \emptyset$. Consider

S = "On input $\langle M \rangle$ where M is a TM:

- Run R on $\langle M, M_1 \rangle$.
- ② If *R* accepts, accept; otherwise, reject."

Computation History

Definition 6

Let M be a TM and w an input string. An <u>accepting computation</u> <u>history</u> for M on w is a sequence of configurations C_1, C_2, \ldots, C_l where

- *C*₁ is the start configuration of *M* on *w*;
- C_l is an accepting configuration of M; and
- C_i yields C_{i+1} in M for $1 \le i < l$.

A rejecting computation history for M on w is similar, except C_l is a rejecting configuration.

- Note that a computation history is a finite sequence.
- A deterministic Turing machine has at most one computation history on any given input.
- A nondeterministic Turing machine may have several computation histories on an input.

Linear Bounded Automaton

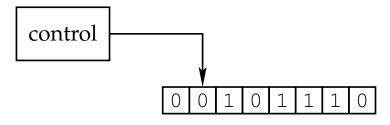


Figure: Schematic of Linear Bounded Automata

Definition 7

A <u>linear bounded automaton</u> is a Turing machine whose tape head is not allowed to move off the portion of its input. If an LBA tries to move its head off the input, the head stays.

• With a larger tape alphabet than its input alphabet, an LBA is able to increase its memory up to a constant factor.

Acceptance Problem for Linear Bounded Automata

Consider

 $A_{LBA} = \{\langle M, w \rangle : M \text{ is an LBA and } M \text{ accepts } w\}.$

Lemma 8

Let M be an LBA with q states and g tape symbols. There are exactly qngⁿ different configurations of M for a tape of length n.

- An LBA has only a finite number of different configurations on an input.
- Many langauges can be decided by LBA's.
 - ▶ For instance, A_{DFA} , A_{CFG} , E_{DFA} , and E_{CFG} .
- Every context-free languages can be decided by LBA's.

Acceptance Problem for Linear Bounded Automata

Theorem 9

 A_{LBA} is decidable.

Proof.

Consider

L = "On input $\langle M, w \rangle$ where M is an LBA and w a string:

- Simulate M on w for qng^n steps or until it halts. $(q, n, and g are obtained from <math>\langle M \rangle$ and w.)
- ② If M does not halt in qng^n steps, reject.
- **③** If *M* accepts *w*, accept; if *M* rejects *w*, reject."

 The acceptance problem for LBA's is decidable. What about the emptiness problem for LBA's?

$$E_{LBA} = \{ \langle M \rangle : M \text{ is an LBA with } L(M) = \emptyset \}.$$

Emptiness Problem for Linear Bounded Automata

Theorem 10

 E_{LBA} is undecidable.

Proof.

We reduce the acceptance problem for TM's to the emptiness problem for LBA. Let R be a TM deciding E_{LBA} . Consider

- Use $\langle M \rangle$ to construct the following LBA: $B = \text{"On input } \langle C_1, C_2, \dots, C_l \rangle$ where C_i 's are configurations of M:
 - **1** If C_1 is not the start configuration of M on w, reject.
 - **2** If C_l is not an accepting configuration, reject.
 - **⑤** For each $1 \le i < l$, if C_i does not yield C_{i+1} , reject.
 - Otherwise, accept."
- **2** Run R on $\langle B \rangle$.
- **1** If *R* rejects, accept; otherwise, reject."

Universality of Context-Free Grammars

Consider a problem related to the emptiness problem for CFL's

$$ALL_{CFG} = \{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \}.$$

- Let x be a string. Write x^R for the string x in reverse order.
 - ▶ For example, $100^R = 001$, level^R = level.
 - Another example,

乾隆: 客上天然居 居然天上客 紀曉嵐: 人過大鐘寺 寺鐘大過人

• Let C_1, C_2, \dots, C_l be the accepting configuration of M on input w. Consider the following string in the next theorem:

$$\#\langle C_1\rangle\#\langle C_2\rangle^R\#\cdots\#\langle C_{2k-1}\rangle\#\langle C_{2k}\rangle^R\#\cdots\#\langle C_l\rangle\#$$

Universality of Context-Free Grammars

Theorem 11

ALL_{CFG} is undecidable.

Proof.

We reduce the acceptance problem for TM's to the universalty problem. We construct a nondeterministic PDA D that accepts all strings if and only if M does not accept w. The input and stack alphabets of D contain symbols to encode M's configurations. D = "On input $\#x_1\#x_2\#\cdots\#x_l\#$:

- 1 Do one of the following branches nondeterministically:
 - ▶ If $x_1 \neq \langle C_1 \rangle$ where C_1 is the start configuration of M on w, accept.
 - ▶ If $x_l \neq \langle C_l \rangle$ where C_l is a accepting configuration of M, accept.
 - Choose odd *i* nondeterministically. If $x_i \neq \langle C \rangle$, $x_{i+1}^R \neq \langle C' \rangle$, or *C* does not yield C' (*C*, C' are configurations of *M*), then accept."
 - Choose even *i* nondeterministically. If $x_i^R \neq \langle C \rangle$, $x_{i+1} \neq \langle C' \rangle$, or *C* does not yield *C'* (*C*, *C'* are configurations of *M*), then accept."

M accepts w iff the accepting computation history of M on w is not in L(D) iff $CFG(D) \notin ALL_{CFG}$.

Post Correspondence Problem (PCP)

- A <u>domino</u> is a pair of strings: $\left[\frac{t}{b} \right]$
- A <u>match</u> is a sequence of dominos $\left[\frac{t_1}{b_1}\right] \left[\frac{t_2}{b_2}\right] \cdots \left[\frac{t_k}{b_k}\right]$ such that $t_1t_2 \cdots t_k = b_1b_2 \cdots b_k$.
- The <u>Post correspondence problem</u> is to test whether there is a match for a given set of dominos.

$$PCP = \{\langle P \rangle : P \text{ is an instance of the PCP with a match}\}$$

Consider

$$P = \left\{ \begin{bmatrix} \frac{b}{ca} \end{bmatrix}, \begin{bmatrix} \frac{a}{ab} \end{bmatrix}, \begin{bmatrix} \frac{ca}{a} \end{bmatrix}, \begin{bmatrix} \frac{abc}{c} \end{bmatrix} \right\}$$

• A match in *P*:

$$\begin{bmatrix} \underline{a} \\ \underline{ab} \end{bmatrix} \begin{bmatrix} \underline{b} \\ \underline{ca} \end{bmatrix} \begin{bmatrix} \underline{ca} \\ \underline{a} \end{bmatrix} \begin{bmatrix} \underline{a} \\ \underline{ab} \end{bmatrix} \begin{bmatrix} \underline{abc} \\ \underline{c} \end{bmatrix}$$

The Modified Post Correspondence Problem

• The modified Post correspondence problem is a PCP where a match starts with the first domino. That is,

 $MPCP = \{\langle P \rangle : P \text{ is an instance of the PCP with a match starting with the first domino} \}$

Theorem 12

PCP is undecidable.

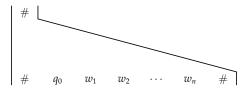
Proof idea.

We reduce the acceptance problem for TM's to PCP. Given a TM M and a string w, we first construct an MPCP P' such that $\langle P' \rangle \in MPCP$ if and only if M accepts w. The MPCP P' encodes an accepting computation history of M on w. Finally, we reduce MPCP P' to PCP P.

Proof.

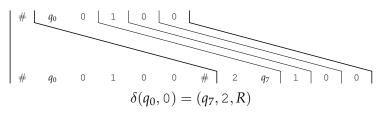
Let the TM R decide MPCP. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be the given TM and $w = w_1 w_2 \cdots w_n$ the input. The set P' of dominos has

• $\left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$ as the first domino. Begin with the start configuration (bottom).



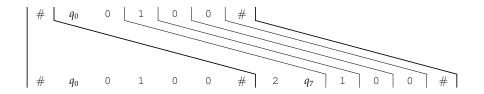
Proof (cont'd).

- $\left\lfloor \frac{qa}{br} \right\rfloor$ if $\delta(q, a) = (r, b, R)$ with $q \neq q_{\text{reject}}$. Reads a at state q (top); writes b and moves right (bottom).
- $\left[\frac{cqa}{rcb}\right]$ if $\delta(q,a)=(r,b,L)$ with $q\neq q_{\text{reject}}$. Reads a at state q (top); writes b and moves left (bottom).
- $\left| \frac{a}{a} \right|$ if $a \in \Gamma$. Keeps other symbols intact.



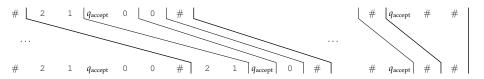
Proof (cont'd).

• $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\sqcup\#}\right]$ Matches previous # (top) with a new # (bottom). Adds \sqcup when M moves out of the right end.



Proof (cont'd).

- $\left[\frac{aq_{\text{accept}}}{q_{\text{accept}}}\right]$ and $\left[\frac{q_{\text{accept}}a}{q_{\text{accept}}}\right]$ if $a \in \Gamma$. Eats up tape symbols around q_{accept} .
- $\left[\begin{array}{c} q_{\text{accept}} \# \# \\ \# \end{array}\right]$. Completes the match.



Proof (cont'd).

So far, we have reduced the acceptance problem of TM's to MPCP. To complete the proof, we need to reduce MPCP to PCP.

Let $u = u_1 u_2 \cdots u_n$. Define

Given a MPCP P':

$$\left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \dots, \left[\frac{t_k}{b_k} \right] \right\}$$

Construct a PCP P:

$$\left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \dots, \left[\frac{\star t_k}{b_k \star} \right], \left[\frac{\star \Diamond}{\Diamond} \right] \right\}$$

Any match in *P* must start with the domino $\begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}$.

Computable Functions

Definition 13

 $f: \Sigma^* \to \Sigma^*$ is <u>computable</u> if some Turing machine M, on input w, halts with f(w) on its tape.

• Usual arithmetic operations on integers are computable functions. For instance, the addition operation is a computable function mapping $\langle m, n \rangle$ to $\langle m+n \rangle$ where m, n are integers.

Mapping Reducibility

Definition 14

A language A is mapping reducible (or many-one reducible) to a languate B (written $A \leq_m B$) if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$, for every $w \in \Sigma^*$.

f is called the reduction of *A* to *B*.

Properties of Reducibility

Theorem 15

If $A \leq_m B$ *and* B *is decidable,* A *is decidable.*

Proof.

Let the TM M decide B and f the reduction of A to B. Consider N = "On input w:

- Construct f(w).
- 2 Run M on f(w).
- If M accepts, accept; otherwise reject.

Corollary 16

If $A \leq_m B$ *and* A *is undecidable, then* B *is undecidable.*

Examples

Example 17

Give a mapping reduction of A_{TM} to $HALT_{\text{TM}}$.

Proof.

We need to show a computable function f such that $\langle M, w \rangle \in A_{\text{TM}}$ if and only if $\langle M', w' \rangle \in HALT_{\text{TM}}$ whenever $\langle M', w' \rangle = f(\langle M, w \rangle)$. Consider

F = "On input $\langle M, w \rangle$:

- Use $\langle M \rangle$ and w to construct M' = "On input x:
 - Run *M* on *x*.
 - ② If *M* accepts, accept.
 - If M rejects, loop."
- ② Output $\langle M', w \rangle$."

Examples

Example 18

Give a mapping reduction from E_{TM} to EQ_{TM} .

Proof.

The proof of Theorem 5 gives such a reduction. The reduction maps the input $\langle M \rangle$ to $\langle M, M_1 \rangle$ where M_1 is a TM with $L(M_1) = \emptyset$.

Transitivity of Mapping Reductions

Lemma 19

If $A \leq_m B$ and $B \leq_m C$, $A \leq_m C$.

Proof.

Let f and g be the reductions of A to B and B to C respectively. $g \circ f$ is a reduction of A to C.

Example 20

Give a mapping reduction from A_{TM} to PCP.

Proof.

The proof of Theorem 12 gives such a reduction. We first show $A_{\text{TM}} \leq_m MPCP$. Then we show $MPCP \leq_m PCP$.

More Properties about Mapping Reductions

Theorem 21

If $A \leq_m B$ *and* B *is Turing-recognizable, then* A *is Turing-recognizable.*

Proof.

Similar to the proof of Theorem 15 except that *M* and *N* are TM's, not deciders.

Corollary 22

If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

More Properties about Mapping Reductions

- Observe that $A \leq_m B$ if and only if $\overline{A} \leq_m \overline{B}$.
 - ▶ The same reduction applies to \overline{A} and \overline{B} as well.
- Recall that \overline{A}_{TM} is not Turing-recognizable.
- In order to show *B* is not Turing-recognizable, it suffices to show $A_{TM} \leq_m \overline{B}$.
 - ▶ $A_{\text{TM}} \leq_m \overline{B}$ implies $\overline{A_{\text{TM}}} \leq_m \overline{\overline{B}}$. That is, $\overline{A_{\text{TM}}} \leq_m B$.

Equivalence Problem for TM's (revisited)

Theorem 23

 EQ_{TM} is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.

We first show $A_{\text{TM}} \leq_m \overline{EQ_{\text{TM}}}$. Consider

F = "On input $\langle M, w \rangle$ where M is a TM and w a string:

Construct

 M_1 = "On input x:

Reject."

 M_2 = "On input x:

• Run *M* on *w*. If *M* accepts, accept."

Output $\langle M_1, M_2 \rangle$."

Equivalence Problem for TM's (revisited)

Proof (cont'd).

Next we show $A_{\text{TM}} \leq_m EQ_{\text{TM}}$. Consider

G = "On input $\langle M, w \rangle$ where M is a TM and w a string:

- Construct
 - M_1 = "On input x:
 - Accept."

 M_2 = "On input x:

- \bullet Run M on w.
- **②** If *M* accepts *w*, accept."
- ② Output $\langle M_1, M_2 \rangle$."

