Theory of Computing Reducibility

Ming-Hsien Tsai

Department of Information Management National Taiwan University

Spring 2019
(original created by Bow-Yaw Wang)

Reducibility

- In mathematics, many problems are solved by "reduction."
- Recall the reduction from Eulerian path to Eulerian cycle.
- Suppose $E C(G)$ returns true iff G has a Eulerian cycle.
- Let s, t be nodes of a graph G.
- To check if there is a Eulerian path from s to t in G.
- Construct a graph G^{\prime} that is identical to G except an additional edge between s and t.
- If $E C\left(G^{\prime}\right)$ returns true, there is a Eulerian path from s to t.
- If $E C\left(G^{\prime}\right)$ returns false, there is no Eulerian path from s to t.
- Instead of inventing a new algorithm for finding Eulerian paths, we use $E C(G)$ as a subroutine.
- We say the Eulerian path problem is reduced to the Eulerian cycle problem.

Reducibility

- Let us say A and B are two problems and A is reduced to B.
- If we solve B, we solve A as well.
- If we solve the Eulerian cycle problem, we solve the Eulerian path problem.
- If we can't solve A, we can't solve B.
- To show a problem P is not decidable, it suffices to reduce A_{TM} to P.
- We will give examples in this chapter.

The Halting Problem for Turing Machines

- The halting problem is to test whether a TM M halts on a string w.
- As usual, we first give a language-theoretic formulation. $H A L T_{\mathrm{TM}}=\{\langle M, w\rangle: M$ is a TM and M halts on the input $w\}$.

Theorem 1

$H A L T_{T M}$ is undecidable.

Proof.

We would like to reduce the acceptance problem to the halting problem. Suppose a TM R decides $H A L T_{\mathrm{TM}}$. Consider
$S=$ "On input $\langle M, w\rangle$ where M is a TM and w is a string:
(1) Run TM R on the input $\langle M, w\rangle$.
(2) If R rejects, reject.
(3) If R accepts, simulate M on w until it halts.
(9) If M accepts, accept; if M rejects, reject."

Emptiness Problem for Turing Machines

- Consider $E_{\mathrm{TM}}=\{\langle M\rangle: M$ is a TM and $L(M)=\emptyset\}$.

Theorem 2

$E_{T M}$ is undecidable.

Proof.

We reduce the acceptance problem to the emptiness problem. Let the TM R decides $E_{\text {TM }}$. Consider
$S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M\rangle$ to construct
$M_{1}=$ "On input x :
(1) If $x \neq w$, reject.
(2) If $x=w$, run M on the input x. If M accepts x, accept."
(2) Run R on the input $\left\langle M_{1}\right\rangle$.
(3) If R accepts, reject; otherwise, accept."

Regularity Problem for Turing Machines

- Consider

$$
R E G U L A R_{\mathrm{TM}}=\{\langle M\rangle: M \text { is a } \mathrm{TM} \text { and } L(M) \text { is regular }\} .
$$

Theorem 3

REGULAR ${ }_{T M}$ is undecidable.

Proof.

Let R be a TM deciding REGULAR $_{\mathrm{TM}}$. Consider
$S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M\rangle$ to construct
$M_{2}=$ "On input x :
(1) If x is of the form $0^{n} 1^{n}$, accept.
(2) Otherwise, run M on the input w. If M accepts w, accepts."
(2) Run R on the input $\left\langle M_{2}\right\rangle$.
(3) If R accepts, accept; otherwise, reject."

Rice's Theorem

Theorem 4

Let P be a language consisting of TM descriptions such that
(1) P is not trivial $(P \neq \emptyset$ and there is a TM M with $\langle M\rangle \notin P)$;
(2) If $L\left(M_{1}\right)=L\left(M_{2}\right),\left\langle M_{1}\right\rangle \in P$ iff $\left\langle M_{2}\right\rangle \in P$.

Then P is undecidable.

Proof.

Let R be a TM deciding P. Let T_{\emptyset} be a TM with $L\left(T_{\emptyset}\right)=\emptyset$. WLOG, assume $\left\langle T_{\emptyset}\right\rangle \notin P$. Moreover, pick a TM T with $\langle T\rangle \in P$. Consider $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M\rangle$ to construct
$M_{w}=$ "On input x :
(1) Run M on w. If M halts and rejects, reject.
(2) If M accepts w, run T on x."
(2) Run R on $\left\langle M_{w}\right\rangle$.
(3) If R accepts, accept; otherwise, reject."

Language Equivalence Problem for Turing Machines

- Consider

$$
E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle: M_{1} \text { and } M_{2} \text { are TM's with } L\left(M_{1}\right)=L\left(M_{2}\right)\right\} .
$$

Theorem 5

$E Q_{T M}$ is undecidable.

Proof.

We reduce the emptiness problem to the language equivalence problem this time. Let the TM R decide $E Q_{\text {TM }}$ and TM M_{1} with $L\left(M_{1}\right)=\emptyset$. Consider $S=$ "On input $\langle M\rangle$ where M is a TM:
(1) Run R on $\left\langle M, M_{1}\right\rangle$.
(2) If R accepts, accept; otherwise, reject."

Computation History

Definition 6

Let M be a TM and w an input string. An accepting computation history for M on w is a sequence of configurations $C_{1}, C_{2}, \ldots, C_{l}$ where

- C_{1} is the start configuration of M on w;
- C_{l} is an accepting configuration of M; and
- C_{i} yields C_{i+1} in M for $1 \leq i<l$.

A rejecting computation history for M on w is similar, except C_{l} is a rejecting configuration.

- Note that a computation history is a finite sequence.
- A deterministic Turing machine has at most one computation history on any given input.
- A nondeterminsitic Turing machine may have several computation histories on an input.

Linear Bounded Automaton

control

Figure: Schematic of Linear Bounded Automata

Definition 7

A linear bounded automaton is a Turing machine whose tape head is not allowed to move off the portion of its input. If an LBA tries to move its head off the input, the head stays.

- With a larger tape alphabet than its input alphabet, an LBA is able to increase its memory up to a constant factor.

Acceptance Problem for Linear Bounded Automata

- Consider

$$
A_{\mathrm{LBA}}=\{\langle M, w\rangle: M \text { is an LBA and } M \text { accepts } w\} .
$$

Lemma 8

Let M be an LBA with q states and g tape symbols. There are exactly $q n g^{n}$ different configurations of M for a tape of length n.

- An LBA has only a finite number of different configurations on an input.
- Many langauges can be decided by LBA's.
- For instance, $A_{\mathrm{DFA}}, A_{\mathrm{CFG}}, E_{\mathrm{DFA}}$, and E_{CFG}.
- Every context-free langauges can be decided by LBA's.

Acceptance Problem for Linear Bounded Automata

Theorem 9

$A_{\text {LBA }}$ is decidable.

Proof.

Consider
$L=$ "On input $\langle M, w\rangle$ where M is an LBA and w a string:
(1) Simulate M on w for $q n g^{n}$ steps or until it halts. (q, n, and g are obtained from $\langle M\rangle$ and w.)
(2) If M does not halt in $q n g^{n}$ steps, reject.

- If M accepts w, accept; if M rejects w, reject."
- The acceptance problem for LBA's is decidable. What about the emptiness problem for LBA's?

$$
E_{\mathrm{LBA}}=\{\langle M\rangle: M \text { is an LBA with } L(M)=\emptyset\} .
$$

Emptiness Problem for Linear Bounded Automata

Theorem 10

$E_{L B A}$ is undecidable.

Proof.

We reduce the acceptance problem for TM's to the emptiness problem for LBA. Let R be a TM deciding $E_{\text {LBA }}$. Consider $S=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Use $\langle M\rangle$ to construct the following LBA:
$B=$ "On input $\left\langle C_{1}, C_{2}, \ldots, C_{l}\right\rangle$ where C_{i} 's are configurations of M :
(1) If C_{1} is not the start configuration of M on w, reject.
(2) If C_{l} is not an accepting configuration, reject.
(3) For each $1 \leq i<l$, if C_{i} does not yield C_{i+1}, reject.
(1) Otherwise, accept."
(2) Run R on $\langle B\rangle$.
(3) If R rejects, accept; otherwise, reject."

Universality of Context－Free Grammars

－Consider a problem related to the emptiness problem for CFL＇s

$$
A L L_{\mathrm{CFG}}=\left\{\langle G\rangle: G \text { is a CFG and } L(G)=\Sigma^{*}\right\}
$$

－Let x be a string．Write x^{R} for the string x in reverse order．
－For example， $100^{R}=001$ ，level ${ }^{R}=1$ evel．
－Another example，
乾隆：客上天然居 居然天上客
紀曉嵐：人過大鐘寺 寺鐘大過人
－Let $C_{1}, C_{2}, \ldots, C_{l}$ be the accepting configuration of M on input w ． Consider the following string in the next theorem：

$$
\#\left\langle C_{1}\right\rangle \#\left\langle C_{2}\right\rangle^{R} \# \cdots \#\left\langle C_{2 k-1}\right\rangle \#\left\langle C_{2 k}\right\rangle^{R} \# \cdots \#\left\langle C_{l}\right\rangle \#
$$

Universality of Context-Free Grammars

Theorem 11

$A L L_{\text {CFG }}$ is undecidable.

Proof.

We reduce the acceptance problem for TM's to the universalty problem. We construct a nondeterministic PDA D that accepts all strings if and only if M does not accept w. The input and stack alphabets of D contain symbols to encode M 's configurations. $D=$ "On input $\# x_{1} \# x_{2} \# \cdots \# x_{l} \#$:
(1) Do one of the following branches nondeterministically:

If $x_{1} \neq\left\langle C_{1}\right\rangle$ where C_{1} is the start configuration of M on w, accept. If $x_{l} \neq\left\langle C_{l}\right\rangle$ where C_{l} is a accepting configuration of M, accept. Choose odd i nondeterministically. If $x_{i} \neq\langle C\rangle, x_{i+1}^{R} \neq\left\langle C^{\prime}\right\rangle$, or C does not yield $C^{\prime}\left(C, C^{\prime}\right.$ are configurations of $\left.M\right)$, then accept." Choose even i nondeterministically. If $x_{i}^{R} \neq\langle C\rangle, x_{i+1} \neq\left\langle C^{\prime}\right\rangle$, or C does not yield $C^{\prime}\left(C, C^{\prime}\right.$ are configurations of $\left.M\right)$, then accept."
M accepts w iff the accepting computation history of M on w is not in $L(D)$ iff $C F G(D) \notin A L L_{\mathrm{CFG}}$.

Post Correspondence Problem (PCP)

- A domino is a pair of strings: $\left[\frac{t}{b}\right]$
- A $\underline{\text { match }}$ is a sequence of dominos $\left[\frac{t_{1}}{b_{1}}\right]\left[\frac{t_{2}}{b_{2}}\right] \cdots\left[\frac{t_{k}}{b_{k}}\right]$ such that $t_{1} t_{2} \cdots t_{k}=b_{1} b_{2} \cdots b_{k}$.
- The Post correspondence problem is to test whether there is a match for a given set of dominos.

$$
P C P=\{\langle P\rangle: P \text { is an instance of the PCP with a match }\}
$$

- Consider

$$
P=\left\{\left[\frac{\mathrm{b}}{\mathrm{ca}}\right],\left[\frac{\mathrm{a}}{\mathrm{ab}}\right],\left[\frac{\mathrm{ca}}{\mathrm{a}}\right],\left[\frac{\mathrm{abc}}{\mathrm{c}}\right]\right\}
$$

- A match in P :

$$
\left[\frac{\mathrm{a}}{\mathrm{ab}}\right]\left[\frac{\mathrm{b}}{\mathrm{ca}}\right]\left[\frac{\mathrm{ca}}{\mathrm{a}}\right]\left[\frac{\mathrm{a}}{\mathrm{ab}}\right]\left[\frac{\mathrm{abc}}{\mathrm{c}}\right]
$$

The Modified Post Correspondence Problem

- The modified Post correspondence problem is a PCP where a match starts with the first domino. That is,

$$
\begin{aligned}
M P C P=\{\langle P\rangle: & P \text { is an instance of the PCP with a match } \\
& \text { starting with the first domino }\}
\end{aligned}
$$

Theorem 12
PCP is undecidable.

Proof idea.

We reduce the acceptance problem for TM's to PCP. Given a TM M and a string w, we first construct an MPCP P^{\prime} such that $\left\langle P^{\prime}\right\rangle \in M P C P$ if and only if M accepts w. The MPCP P^{\prime} encodes an accepting computation history of M on w. Finally, we reduce MPCP P^{\prime} to PCP P.

The Post Correspondence Problem

Proof.

Let the TM R decide MPCP. Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be the given TM and $w=w_{1} w_{2} \cdots w_{n}$ the input. The set P^{\prime} of dominos has

- $\left[\frac{\#}{\# q_{0} w_{1} w_{2} \cdots w_{n} \#}\right]$ as the first domino. Begin with the start configuration (bottom).

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{q a}{b r}\right]$ if $\delta(q, a)=(r, b, R)$ with $q \neq q_{\text {reject }}$. Reads a at state q (top); writes b and moves right (bottom).
- $\left[\frac{c q a}{r c b}\right]$ if $\delta(q, a)=(r, b, L)$ with $q \neq q_{\text {reject }}$. Reads a at state q (top); writes b and moves left (bottom).
- $\left[\frac{a}{a}\right]$ if $a \in \Gamma$. Keeps other symbols intact.

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\sqcup \#}\right]$ Matches previous \# (top) with a new \# (bottom). Adds \sqcup when M moves out of the right end.

The Post Correspondence Problem

Proof (cont'd).

- $\left[\frac{a q_{\text {accept }}}{q_{\text {accept }}}\right]$ and $\left[\frac{q_{\text {accept }} a}{q_{\text {accept }}}\right]$ if $a \in \Gamma$. Eats up tape symbols around $q_{\text {accept }}$.
- $\left[\frac{q_{\text {accept }} \# \#}{\#}\right]$. Completes the match.

The Post Correspondence Problem

Proof (cont'd).

So far, we have reduced the acceptance problem of TM's to MPCP. To complete the proof, we need to reduce MPCP to PCP.
Let $u=u_{1} u_{2} \cdots u_{n}$. Define

$$
\begin{array}{rllllllllll}
\star u & = & * & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & \\
u \star & = & & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & * \\
\star u \star & = & * & u_{1} & * & u_{2} & * & \cdots & * & u_{n} & *
\end{array}
$$

Given a MPCP P^{\prime} :

$$
\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots,\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

Construct a PCP P:

$$
\left\{\left[\frac{\star t_{1}}{\star b_{1} \star}\right],\left[\frac{\star t_{2}}{b_{2} \star}\right], \ldots,\left[\frac{\star t_{k}}{b_{k} \star}\right],\left[\frac{* \diamond}{\diamond}\right]\right\}
$$

Any match in P must start with the domino $\left[\frac{\star t_{1}}{\star b_{1} \star}\right]$.

Computable Functions

Definition 13

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if some Turing machine M, on input w, halts with $f(w)$ on its tape.

- Usual arithmetic operations on integers are computable functions. For instance, the addition operation is a computable function mapping $\langle m, n\rangle$ to $\langle m+n\rangle$ where m, n are integers.

Mapping Reducibility

Definition 14

A language A is mapping reducible (or many-one reducible) to a languate B (written $A \leq_{m} B$) if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that

$$
w \in A \text { if and only if } f(w) \in B, \text { for every } w \in \Sigma^{*} .
$$

f is called the reduction of A to B.

Properties of Reducibility

Theorem 15

If $A \leq_{m} B$ and B is decidable, A is decidable.

Proof.

Let the TM M decide B and f the reduction of A to B. Consider $N=$ "On input w :
(1) Construct $f(w)$.
(2) Run M on $f(w)$.
(3) If M accepts, accept; otherwise reject.

Corollary 16

If $A \leq_{m} B$ and A is undecidable, then B is undecidable.

Examples

Example 17

Give a mapping reduction of A_{TM} to $H A L T_{\mathrm{TM}}$.

Proof.

We need to show a computable function f such that $\langle M, w\rangle \in A_{\text {TM }}$ if and only if $\left\langle M^{\prime}, w^{\prime}\right\rangle \in H A L T_{\mathrm{TM}}$ whenever $\left\langle M^{\prime}, w^{\prime}\right\rangle=f(\langle M, w\rangle)$.
Consider
$F=$ "On input $\langle M, w\rangle$:
(1) Use $\langle M\rangle$ and w to construct
$M^{\prime}=$ "On input x :
(1) Run M on x.
(2) If M accepts, accept.
(3) If M rejects, loop."
(2) Output $\left\langle M^{\prime}, w\right\rangle$."

Examples

Example 18

Give a mapping reduction from E_{TM} to $E Q_{\mathrm{TM}}$.

Proof.

The proof of Theorem 5 gives such a reduction. The reduction maps the input $\langle M\rangle$ to $\left\langle M, M_{1}\right\rangle$ where M_{1} is a TM with $L\left(M_{1}\right)=\emptyset$.

Transitivity of Mapping Reductions

Lemma 19

If $A \leq_{m} B$ and $B \leq_{m} C, A \leq_{m} C$.

Proof.

Let f and g be the reductions of A to B and B to C respectively. $g \circ f$ is a reduction of A to C.

Example 20

Give a mapping reduction from A_{TM} to $P C P$.

Proof.

The proof of Theorem 12 gives such a reduction. We first show $A_{\mathrm{TM}} \leq_{m} M P C P$. Then we show $M P C P \leq_{m} P C P$.

More Properties about Mapping Reductions

Theorem 21

If $A \leq_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

Similar to the proof of Theorem 15 except that M and N are TM's, not deciders.

Corollary 22
If $A \leq_{m} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

More Properties about Mapping Reductions

- Observe that $A \leq_{m} B$ if and only if $\bar{A} \leq_{m} \bar{B}$.
- The same reduction applies to \bar{A} and \bar{B} as well.
- Recall that $\overline{A_{\mathrm{TM}}}$ is not Turing-recognizable.
- In order to show B is not Turing-recognizable, it suffices to show $A_{\mathrm{TM}} \leq_{m} \bar{B}$.
- $A_{\mathrm{TM}} \leq_{m} \bar{B}$ implies $\overline{A_{\mathrm{TM}}} \leq_{m} \overline{\bar{B}}$. That is, $\overline{A_{\mathrm{TM}}} \leq_{m} B$.

Equivalence Problem for TM's (revisited)

Theorem 23

$E Q_{T M}$ is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.

We first show $A_{\mathrm{TM}} \leq_{m} \overline{E Q_{\mathrm{TM}}}$. Consider
$F=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
(1) Construct
$M_{1}=$ "On input x :
(1) Reject."
$M_{2}=$ "On input x :
(1) Run M on w. If M accepts, accept."
(2) Output $\left\langle M_{1}, M_{2}\right\rangle$."

Equivalence Problem for TM's (revisited)

Proof (cont'd).

Next we show $A_{\text {TM }} \leq_{m} E Q_{\text {TM }}$. Consider $G=$ "On input $\langle M, w\rangle$ where M is a TM and w a string:
© Construct $M_{1}=$ "On input x :
(1) Accept."
$M_{2}=$ "On input x :
(1) Run M on w.
(2) If M accepts w, accept."
(2) Output $\left\langle M_{1}, M_{2}\right\rangle$."

