Theory of Computing

Reducibility

Ming-Hsien Tsai

Department of Information Management
National Taiwan University

Spring 2019

(original created by Bow-Yaw Wang)

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 1/32

Reducibility

@ In mathematics, many problems are solved by “reduction.”
@ Recall the reduction from Eulerian path to Eulerian cycle.
» Suppose EC(G) returns true iff G has a Eulerian cycle.
Let s, t be nodes of a graph G.
To check if there is a Eulerian path from s to ¢ in G.
Construct a graph G’ that is identical to G except an additional edge
between s and t.
If EC(G’) returns true, there is a Eulerian path from s to t.
» If EC(G’) returns false, there is no Eulerian path from s to ¢.

\4

v

v

v

@ Instead of inventing a new algorithm for finding Eulerian paths,
we use EC(G) as a subroutine.

@ We say the Eulerian path problem is reduced to the Eulerian cycle
problem.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 2/32

Reducibility

Let us say A and B are two problems and A is reduced to B.
If we solve B, we solve A as well.

» If we solve the Eulerian cycle problem, we solve the Eulerian path
problem.

If we can’t solve A, we can’t solve B.

To show a problem P is not decidable, it suffices to reduce Aty to
P.

We will give examples in this chapter.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 3/32

The Halting Problem for Turing Machines

@ The halting problem is to test whether a TM M halts on a string w.
@ As usual, we first give a language-theoretic formulation.

HALTTv = {(M,w) : M is a TM and M halts on the input w}.

Theorem 1
HALT 1 is undecidable.

Proof.

We would like to reduce the acceptance problem to the halting
problem. Suppose a TM R decides HALT1y. Consider
S = “On input (M, w) where M is a TM and w is a string;:

@ Run TM R on the input (M, w).

@ If R rejects, reject.

@ If R accepts, simulate M on w until it halts.

Q If M accepts, accept; if M rejects, reject.” O
Ming-Hsien Tsai (IM@NTU) Reducibility

Emptiness Problem for Turing Machines

e Consider Ery = {(M) : Misa TM and L(M) = 0}.

Theorem 2
ETp is undecidable.

Proof.
We reduce the acceptance problem to the emptiness problem. Let the
TM R decides Eys. Consider
S = “On input (M, w) where M is a TM and w a string;:
Q Use (M) to construct
M; = “On input x:
@ If x # w, reject.
@ If x = w, run M on the input x. If M accepts x, accept.
@ Run R on the input (M;).

@ If R accepts, reject; otherwise, accept.” O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 5/32

”

Regularity Problem for Turing Machines

@ Consider

REGULART\ = {{M) : Mis a TM and L(M) is regular}.

Theorem 3
REGULART) is undecidable.

Proof.
Let R be a TM deciding REGULART). Consider
S = “On input (M, w) where M is a TM and w a string:

@ Use (M) to construct
M, = “On input x:
@ If xis of the form 0"1", accept.
@ Otherwise, run M on the input w. If M accepts w, accepts.”

@ Run R on the input (Mj).

@ If R accepts, accept; otherwise, reject.” O]

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 6/32

Rice’s Theorem

Theorem 4

Let P be a language consisting of TM descriptions such that
@ P s not trivial (P # () and there is a TM M with (M) & P);
© IfL(Mi) = L(M>), (M1) € P iff (M) € P.

Then P is undecidable.

Proof.

Let R be a TM deciding P. Let Ty be a TM with L(Tp) = 0. WLOG, assume (Ty) & P.
Moreover, pick a TM T with (T) € P. Consider
S = “On input (M, w) where M is a TM and w a string:

@ Use (M) to construct
My = “On input x:
@ Run M on w. If M halts and rejects, reject.
@ If M acceptsw, run T on x.”
© Run R on (My).
© If R accepts, accept; otherwise, reject.” O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 7/32

Language Equivalence Problem for Turing Machines

@ Consider

EQTM = {<M1,M2> : M1 and M, are TM’s with L(Ml) = L(Mz)}.

Theorem 5

EQrum is undecidable.

Proof.

We reduce the emptiness problem to the language equivalence
problem this time. Let the TM R decide EQmy and TM M; with
L(M;) = (. Consider
S = “On input (M) where M is a TM:

©Q Run R on (M, My).

@ If R accepts, accept; otherwise, reject.” O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 8/32

Computation History

Definition 6

Let M be a TM and w an input string. An accepting computation
history for M on w is a sequence of configurations Cy, Cy, ..., C; where

@ (C; is the start configuration of M on w;
o (;is an accepting configuration of M; and
o C;yields CipyinMfor1l <i <L

A rejecting computation history for M on w is similar, except C; is a
rejecting configuration.

@ Note that a computation history is a finite sequence.

@ A deterministic Turing machine has at most one computation
history on any given input.

@ A nondeterminsitic Turing machine may have several
computation histories on an input.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 9/32

Linear Bounded Automaton

control

0[{011]01111]11]0

Figure: Schematic of Linear Bounded Automata

Definition 7

A linear bounded automaton is a Turing machine whose tape head is
not allowed to move off the portion of its input. If an LBA tries to
move its head off the input, the head stays.

e With a larger tape alphabet than its input alphabet, an LBA is able
to increase its memory up to a constant factor.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 10/ 32

Acceptance Problem for Linear Bounded Automata

@ Consider

Arga = {{M,w) : M is an LBA and M accepts w}.

Let M be an LBA with q states and g tape symbols. There are exactly qng"

Lemma 8
different configurations of M for a tape of length n.

@ An LBA has only a finite number of different configurations on an
input.
@ Many langauges can be decided by LBA’s.

» For instance, Apga, Acrg, Epra, and Ecgg.

@ Every context-free langauges can be decided by LBA'’s.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 11/32

Acceptance Problem for Linear Bounded Automata

Theorem 9
ALBA is decidable.

Proof.
Consider
L = “On input (M, w) where M is an LBA and w a string:

© Simulate M on w for gng" steps or until it halts. (g, n, and g are
obtained from (M) and w.)

@ If M does not halt in gng" steps, reject.
@ If M accepts w, accept; if M rejects w, reject.” O

@ The acceptance problem for LBA’s is decidable. What about the
emptiness problem for LBA's?

Eiga = {<M> : M is an LBA with L(M) = @}

Ming-Hsien Tsai (IM@NTU) Reducibility

Spring 2019 12/ 32
pring

Emptiness Problem for Linear Bounded Automata

Theorem 10
E;ga is undecidable.

Proof.

We reduce the acceptance problem for TM’s to the emptiness problem
for LBA. Let R be a TM deciding E;ga. Consider
S = “On input (M, w) where M is a TM and w a string;:
@ Use (M) to construct the following LBA:
B = “On input (Cy, Cy, ..., C;) where C;’s are configurations of M:
@ If C; is not the start configuration of M on w, reject.
@ If C; is not an accepting configuration, reject.

@ Foreachl <i < if C; does not yield C; 1, reject.
@ Otherwise, accept.”

@ Run Ron (B).

@ If R rejects, accept; otherwise, reject.” O]

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 13 /32

Universality of Context-Free Grammars

@ Consider a problem related to the emptiness problem for CFL’s
ALLcrg = {(G) : GisaCFG and L(G) = £*}.

@ Let x be a string. Write x® for the string x in reverse order.

» For example, 1008 = 001, levelR = level.
» Another example,

kg FERWE RAKEE
AR NRRESF FEAGBA
@ Let Cq1,Cy, ..., C be the accepting configuration of M on input w.
Consider the following string in the next theorem:

H(C1)F(Co) et -+ - #:(Copemr) #(Co) R - - #(C)#

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 14 /32

Universality of Context-Free Grammars

Theorem 11
ALLcrg is undecidable.

Proof.

We reduce the acceptance problem for TM’s to the universalty problem. We construct
a nondeterministic PDA D that accepts all strings if and only if M does not accept w.
The input and stack alphabets of D contain symbols to encode M’s configurations.
D = “On input #x1#x2% - - - #x17:

@ Do one of the following branches nondeterministically:

If x1 # (C1) where C; is the start configuration of M on w, accept.
If x; # (C;) where C; is a accepting configuration of M, accept.
Choose odd i nondeterministically. If x; # (C), xX ; # (C'), or C
does not yield C’ (C,C’ are configurations of M), then accept.”
Choose even i nondeterministically. If xR = (C), x; 11 # (C’), or C
does not yield C’ (C, C’ are configurations of M), then accept.”

M accepts w iff the accepting computation history of M on w is not in L(D) iff
CFG(D) ¢ ALLckc. O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 15/ 32

Post Correspondence Problem (PCP)

@ A domino is a pair of strings: [;}

@ A match is a sequence of dominos h f ||k such
— bi || b bk

that t1fy - - -ty = b1by - - - by.
@ The Post correspondence problem is to test whether there is a
match for a given set of dominos.

PCP = {(P) : P is an instance of the PCP with a match}

|))

@ Consider

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 16 / 32

The Modified Post Correspondence Problem

@ The modified Post correspondence problem is a PCP where a
match starts with the first domino. That is,

MPCP = {(P) : Pis an instance of the PCP with a match
starting with the first domino}

Theorem 12
PCP is undecidable.

Proof idea.

We reduce the acceptance problem for TM’s to PCP. Given a TM M and
a string w, we first construct an MPCP P’ such that (P') € MPCP if and
only if M accepts w. The MPCP P’ encodes an accepting computation
history of M on w. Finally, we reduce MPCP P’ to PCP P.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 17 /32

The Post Correspondence Problem

Proof.

Let the TM R decide MPCP. Let M = (Q, X, T, 8, 40, Gaccept, Greject) be the given TM and
w = wyw; - - - wy the input. The set P’ of dominos has

T w# o as the first domino. Begin with the start configuration
0W1W2 -+ - W
(bottom).

#

#

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 18 / 32

The Post Correspondence Problem

Proof (cont’d).
° Zi] if 5(q,a) = (r,b, R) with g # greject- Reads a at state q (top); writes b and

moves right (bottom).

[cqa
| rch
moves left (bottom).

} if 6(g,a) = (r,b,L) with g # greject. Reads a at state g (top); writes b and

o %} ifa € T'. Keeps other symbols intact.

5(q05 O) = (‘J% 27R)

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 19/ 32

The Post Correspondence Problem

Proof (cont’d).

i } and { ##] Matches previous # (top) with a new # (bottom). Adds .
(I

when M moves out of the right end.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 20/ 32

The Post Correspondence Problem

Proof (cont’d).
A accept facceptd | .
@ (————| and | ———| ifa € I'. Eats up tape symbols around gaccept-
qaccept Qaccept
) %} . Completes the match.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 21/ 32

The Post Correspondence Problem

Proof (cont’d).

So far, we have reduced the acceptance problem of TM’s to MPCP. To complete the
proof, we need to reduce MPCP to PCP.
Let u = wjuz - - - uy. Define

XU = kU ok Uy ok -- % Uy
Ux = u * Uy * 000 * Uy *
XUk = k% U] Kk Uy ke ok Uy %
Given a MPCP P':
h t b
g | e
Construct a PCP P:
*t1 *t2 ity *Q
*xbix |7 box |7 ek [T O
Any match in P must start with the domino [*Ztl*] . O
1

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 22 /32

Computable Functions

Definition 13

f X" = ¥* is computable if some Turing machine M, on input w, halts
with f(w) on its tape.

@ Usual arithmetic operations on integers are computable functions.
For instance, the addition operation is a computable function
mapping (m, n) to (m + n) where m, n are integers.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019

Mapping Reducibility

Definition 14
A language A is mapping reducible (or many-one reducible) to a
languate B (written A <, B) if there is a computable function

f: X* — ¥* such that

w € Aif and only if f(w) € B, for every w € ¥*.

f is called the reduction of A to B.

Spring 2019

Ming-Hsien Tsai (IM@NTU) Reducibility

Properties of Reducibility

Theorem 15
If A <, B and B is decidable, A is decidable.

Proof.

Let the TM M decide B and f the reduction of A to B. Consider
N = “On input w:

@ Construct f(w).
@ Run M on f(w).
@ If M accepts, accept; otherwise reject. O

Corollary 16
If A <,, Band A is undecidable, then B is undecidable.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 25/32

Example 17
Give a mapping reduction of Aty to HALT 1.

Proof.

We need to show a computable function f such that (M, w) € Aty if
and only if (M',w’) € HALTtp whenever (M', w') = f((M, w)).
Consider
F = “On input (M, w):
Q@ Use (M) and w to construct
M’ = “On input x:
@ Run Mon x.

@ If M accepts, accept.
@ If M rejects, loop.”

@ Output (M, w).” O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 26 /32

Example 18

Give a mapping reduction from Ety to EQrm.

Proof.
The proof of Theorem 5 gives such a reduction. The reduction maps
the input (M) to (M, M) where M; is a TM with L(M;) = 0. O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 27 /32

Transitivity of Mapping Reductions

Lemma 19
IfA<uBand B <,, C,A <, C.

Proof.

Let f and g be the reductions of A to B and B to C respectively. g o f is a
reduction of A to C. O
Example 20

Give a mapping reduction from Aty to PCP.

Proof.

The proof of Theorem 12 gives such a reduction. We first show
Atm <, MPCP. Then we show MPCP <,,, PCP. O

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 28 /32

More Properties about Mapping Reductions

Theorem 21
If A <, B and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

Similar to the proof of Theorem 15 except that M and N are TM’s, not
deciders. O

Corollary 22

If A <, B and A is not Turing-recognizable, then B is not
Turing-recognizable.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 29 /32

More Properties about Mapping Reductions

@ Observe that A <,, Bif and only if A <, B.
» The same reduction applies to A and B as well.
@ Recall that Aty is not Turing-recognizable.
@ In order to show B is not Turing-recognizable, it suffices to show
Atm <m B.
> Arvm <um Eimplies Atm <m B. That is, Atm < B.

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019 30/ 32

Equivalence Problem for TM’s (revisited)

Theorem 23
EQrm is neither Turing-recognizable nor co-Turing-Recognizable.

Proof.

We first show Aty <. EQrm. Consider
F = “On input (M, w) where M is a TM and w a string:
@ Construct
M; = “On input x:
@ Reject.”
M; = “On input x:
@ Run M on w. If M accepts, accept.”

@ Output (M1, M;).”

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019

Equivalence Problem for TM’s (revisited)

Proof (cont’d).

Next we show Aty <;; EQmm. Consider
G = “On input (M, w) where M is a TM and w a string:
© Construct
M; = “On input x:
@ Accept.”
M; = “On input x:
@ Run M on w.
@ If M accepts w, accept.”

@ Output (M;,M,).”]

Ming-Hsien Tsai (IM@NTU) Reducibility Spring 2019

	Undecidable Problems from Language Theory
	Post Correspondence Problem
	Mapping Reducibility

