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Languages and Computational Problems

In this course, we are working on models of computation.
I finite automata, pushdown automata, Turing machines.

Now consider the following computational problem P:
Given a graph G and two nodes s, t on G, check if there is a path
connecting s and t.
How do we formulate this problem in the terminology of
machines?

I Recall that a machine recognizes a language.
I We therefore formulate a computational problem as a language.

Consider the following language A:

A = {〈G, s, t〉 : there is a path connecting s and t in G}.

To find an algorithm that solves the computational problem P is to
find a TM that decides the language A.
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Acceptance Problem for DFA’s

The acceptance problem for DFA’s is to test whether a given
deterministic finite automaton accepts a given input string.
Consider the following language:

ADFA = {〈B,w〉 : B is a DFA that accepts input string w}.

Theorem 1
ADFA is a decidable language.

Proof.
We need to give a TM M that decides ADFA. Consider
M = “On input 〈B,w〉, where B is a DFA and w is a string:

1 Simulate B on input w.
2 If the simulation ends in an accept state, accept; otherwise, reject.”
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Acceptance Problem for NFA’s

The acceptance problem for NFA’s is also solvable. Consider

ANFA = {〈B,w〉 : B is an NFA that accepts input string w}.

Theorem 2

ANFA is a decidable language.

Proof.
We need to give a TM that decides ANFA. Consider
N = “On input 〈B,w〉where B is an NFA and w is a string:

1 Convert the NFA B into a DFA C.
2 Run TM M from Theorem 1 on input 〈C,w〉.
3 If M accepts, accept; otherwise, reject.”

Can we simulate an NFA by an NTM directly? Why not?
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Acceptance Problem for Regular Languages

Consider

AREX = {〈R,w〉 : R is a regular expression that generates string w}.

Theorem 3
AREX is a decidable language.

Proof.
Consider
P = “On input 〈R,w〉where R is a regular expression and w is a string:

1 Convert R into an NFA A.
2 Run TM N (Theorem 2) on the input 〈A,w〉.
3 If N accepts, accept; otherwise, reject.”
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Emptiness Problem for DFA’s

The emptiness problem for DFA’s is to test whether the language
recognized by a given DFA A is empty or not.
Consider

EDFA = {〈A〉 : A is a DFA and L(A) = ∅}.

Theorem 4

EDFA is a decidable language.

Proof.
Consider
T = “On input 〈A〉where A is a DFA:

1 Mark the start state of A.
2 Repeat until no new state is marked:

1 Mark any state that has a transition from a marked state to it.
3 If an accept state is marked, reject; otherwise, accept.”
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Language Equivalence Problem for DFA’s

The language equivalence problem for DFA’s is to test whether
two given DFA’s recognize the same language.
Consider

EQDFA = {〈A,B〉 : A and B are DFA’s and L(A) = L(B)}.
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Language Equivalence Problem for DFA’s

Theorem 5

EQDFA is a decidable language.

Proof.
L(A) and L(B) are regular languages. Recall that regular languages are
closed under complementation. Consider
F = “On input 〈A,B〉where A and B are DFA’s:

1 Construct a DFA C that recognizes

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)).

2 Run TM T (Theorem 4) on the input 〈C〉.
3 If T accepts, accept; otherwise, reject.”
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Acceptance Problem for Context-Free Grammars

Consider

ACFG = {〈G,w〉 : G is a CFG that generates string w}.

Lemma 6
Let G be a CFG in Chomsky normal form and w 6= ε generated by G. Any
derivation of w has 2|w| − 1 steps.

Proof.

We show any derivation A ∗
=⇒ u has 2|u| − 1 steps by induction on |u|.

|u| = 1. Since G is in Chomsky normal form, the only possible rule
is A −→ a. Hence A ∗

=⇒ u in 1 step.

|u| = k + 1. Consider a derivation A =⇒ BC ∗
=⇒ u. Let B ∗

=⇒ u1

and C ∗
=⇒ u2 where u = u1u2. By IH, B ∗

=⇒ u1 in 2|u1| − 1 steps
and C ∗

=⇒ u2 in 2|u2| − 1 steps. Thus A ∗
=⇒ u in

1 + (2|u1| − 1) + (2|u2| − 1) = 2(|u1|+ |u2|)− 1 = 2|u| − 1 steps.
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Acceptance Problem for Context-Free Grammars

Theorem 7

ACFG is a decidable language.

Proof.
Consider
S = “On input 〈G,w〉where G is a CFG and w is a string:

1 Convert G into Chomsky normal form.
2 If w = ε, check all derivations with 1 step.
3 If w 6= ε, check all derivations with 2|w| − 1 steps.
4 If any of these finite derivations generates w, accept; otherwise,

reject.”

Can we simply check all derivations of G without converting it
into Chomsky normal form? Why not?
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Emptiness Problem for Context-Free Grammars

Consider

ECFG = {〈G〉 : G is a CFG and L(G) = ∅}.

Theorem 8
ECFG is a decidable language.

Proof.
A CFG G generates a non-empty language iff there is a derivation for a
string from its start variable. We mark symbols that generate a string.
R = “On input 〈G〉where G is a CFG:

1 Mark all terminal symbols in G.
2 Repeat until no variable is marked:

1 Mark any variable A that has a rule A −→ U1U2 · · ·Uk in G where
Ui are marked for i = 1, . . . , k.

3 If the start variable is not marked, accept; otherwise, reject.”
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Context-Free Languages are Decidable

Theorem 9
Every context-free language is decidable.

Proof.
Let A be a context-free language. We need to come up with a TM that
decides A. Let G be a CFG for A. Consider
MG = “On input w:

1 Run TM S (Theorem 7) on the input 〈G,w〉.
2 If S accepts, accept; otherwise, reject.”

Let A be a context-free language and P a pushdown automaton
recognizing A.
Can we use an NTM to simulate P? Why not?
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Relationship among Languages

regular

Turing-recognizable

decidable

context-free

Figure: Relationship among Different Languages
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Exercise

Consider the problem of determining whether a DFA and a
regular expression are equivalent. Express this problem as a
language and show that it is decidable.

Let ETM = {〈M〉 |M is a TM and L(M) = ∅}. Show that ETM, the
complement of ETM, is Turing-recognizable.
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Acceptance Problem for TM’s

Consider

ATM = {〈M,w〉 : M is a TM and M accepts w}

Consider the following TM:
U = “On input 〈M,w〉where M is a TM and w is a string:

1 Simulate M on the input w.
2 If M enters its accept state, accept; if M enters its reject state, reject.”

Does U decide ATM? Why not?
The TM U is called the universal Turing machine, which inspired
“stored-program” computers.
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Countable vs. Uncountable Sets

Definition 10
Let f be a function from A to B.

We say that f is one-to-one (injective) if f (a) 6= f (b) whenever a 6= b.
Say that f is onto (surjective) if, for every b ∈ B, there is an a ∈ A
such that f (a) = b.
A function that is both one-to-one and onto is called a
correspondence (bijection).
Two sets are considered to have the same size if there is a
correspondence between them.

Definition 11
A set A is countable if either it is finite or it has the same size as
N = {1, 2, 3, · · · }; it is uncountable, otherwise.
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Countable vs. Uncountable Sets (cont.)

Source: [Sipser 2006]
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Uncountable Sets

A real number is one that has a (possibly infinite) decimal
representation.
LetR be the set of real numbers.

Theorem 12
R is uncountable.
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Uncountable Sets (cont.)

Assume that a correspondence f existed between N andR.

n f (n)

1 3.14159 · · ·
2 55.55555 · · ·
3 0.12345 · · ·
4 0.50000 · · ·
...

...

We can find an x, 0 < x < 1, so that the i-th digit following the
decimal point of x is different from that of f (i); for example,
x = 0.4641 · · · is a possible choice.
This proof technique is called diagonalization, discovered by
Georg Cantor in 1873.

Ming-Hsien Tsai (IM@NTU) Undecidability Spring 2019 19 / 24



Exercise

Let T = {(i, j, k) | i, j, k ∈ N}. Show that T is countable (Hint: any
subset of N is countable).
Let B be the set of all infinite sequence over {0, 1}. Show that B is
uncountable using a proof by diagnoalization.
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Counting Arguments

Recall that |N| = |Z| = |Σ∗| = ℵ0 (Σ is finite).
Also recall that |P(Σ∗)| > ℵ0.

I Consult your textbook or my notes on discrete mathematics if you
are not sure.

Corollary 13
Some languages are not Turing-recognizable.

Proof.
The set of all Turing machines is countable since each TM M has an
encoding 〈M〉 in Σ∗.
The set of all languages over Σ is P(Σ∗) and hence is uncountable.
Hence some languages are not Turing-recognizable.

There are in fact uncountably many languages that cannot be
recognized by Turing machines.
Can we find a concrete example?
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Undecidability of the Acceptance Problem for TM’s

Theorem 14
ATM = {〈M,w〉 : M is a TM and M accepts w} is not a decidable language.

Proof.
Suppose there is a TM H deciding ATM. That is,

H(〈M,w〉) =
{

accept if M accepts w
reject if M does not accept w

Consider the following TM:
D = “On input 〈M〉 where M is a TM:

1 Run H on the input 〈M, 〈M〉〉.
2 If H accepts, reject. If H rejects, accept.”

Consider

D(〈D〉) =
{

accept if D does not accept 〈D〉
reject if D accepts 〈D〉

A contradiction.
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A Turing-unrecognizable Language

A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language.

Theorem 15

A language is decidable if and only if it is Turing-recognizable and
co-Turing-recognizable.

Proof.

If A is decidable, then A and A are both recognizable. Since A = A, A is
Turing-recognizable and co-Turing-recognizable.
Now suppose A and A are Turing-recognizable by M1 and M2
respectively. Consider
M = “On input w:

1 Run both M1 and M2 on the input w in parallel.
2 If M1 accepts, accept; if M2 accepts; reject.”
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A Turing-unrecognizable Language

Corollary 16

ATM is not Turing-recognizable.

Proof.
ATM is Turing-recognizable. If ATM is Turing-recognizable, ATM is both
Turing-recognizable and co-Turing-recognizable. By Theorem 15, ATM
is decidable. A contradiction.
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