Theory of Computation Context-Free Languages

Yu-Fang Chen
Academia Sinica

Spring 2019

Context-Free Grammars

- Here is an example of a context-free grammar G_{1} :

$$
\begin{aligned}
A & \longrightarrow 0 A 1 \\
A & \longrightarrow B \\
B & \longrightarrow
\end{aligned}
$$

- Each line is a substitution rule (or production).
- A, B are variables.
- $0,1, \#$ are terminals.
- The left-hand side of the first rule (A) is the start variable.

Grammars and Languages

- A grammar describes a language.
- A grammar generates a string of its language as follows.
(1) Write down the start variable.
(2) Find a written variable and a rule whose left-hand side is that variable.
(3) Replace the written variable with the right-hand side of the rule.
(9) Repeat steps 2 and 3 until no variable remains.
- Any language that can be generated by some context-free grammar is called a context-free language.

Grammars and Languages

- For example, consider the following derivation of the string $00 \# 11$ generated by G_{1} :

$$
A \Rightarrow 0 A 1 \Rightarrow 00 A 11 \Rightarrow 00 B 11 \Rightarrow 00 \# 11
$$

- We also use a parse tree to denote a string generated by a grammar:

Context-Free Grammars - Formal Definition

Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) where

- V is a finite set of variables;
- Σ is a finite set of terminals where $V \cap \Sigma=\emptyset$;
- R is a fintie set of rules. Each rule consists of a variable and a string of variables and terminals; and
- $S \in V$ is the start variable.
- Let u, v, w are strings of variables and terminals, and $A \longrightarrow w$ a rule. We say $u A v$ yields $u w v$ (written $u A v \Rightarrow u w v$).
- u derives $v($ written $u \stackrel{*}{\Longrightarrow} v)$ if $u=v$ or there is a sequence $u_{1}, u_{2}, \ldots, u_{k}(k \geq 0)$ that $u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \cdots \Rightarrow u_{k} \Rightarrow v$.
- The language of the grammar is $\left\{w \in \Sigma^{*}: S \xlongequal{*} w\right\}$.

Context-Free Languages - Examples

Example

Consider $G_{3}=(\{S\},\{()\}, R, S$,$) where R$ is

$$
S \longrightarrow(S)|S S| \epsilon .
$$

- $A \longrightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$ stands for

- Examples of the strings generated by $G_{3}: \epsilon,(),(())(), \ldots$.

Context-Free Languages - Examples

- From a DFA M, we can construct a context-free grammar G_{M} such that the language of G is $L(M)$.
- Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Define $G_{M}=(V, \Sigma, P, S)$ where
- $V=\left\{R_{i}: q_{i} \in Q\right\}$ and $S=\left\{R_{0}\right\} ;$ and
- $P=\left\{R_{i} \longrightarrow a R_{j}: \delta\left(q_{i}, a\right)=q_{j}\right\} \cup\left\{R_{i} \longrightarrow \epsilon: q_{i} \in F\right\}$.
- Recall M_{3} and construct $G_{M_{3}}=\left(\left\{R_{1}, R_{2}\right\},\{0,1\}, P,\left\{R_{1}\right\}\right)$ with

$$
\begin{aligned}
& R_{1} \longrightarrow 0 R_{1}\left|1 R_{2}\right| \epsilon \\
& R_{2} \longrightarrow \quad 0 R_{1} \mid 1 R_{2} .
\end{aligned}
$$

Context-Free Languages - Examples

Example

Consider $\mathrm{G}_{4}=(V, \Sigma, R,\langle\mathrm{EXPR}\rangle)$ where

- $V=\{\langle\mathrm{EXPR}\rangle,\langle\mathrm{TERM}\rangle,\langle\mathrm{FACTOR}\rangle\}, \Sigma=\{\mathrm{a},+, \times,()$,$\} ; and$
- R is

$$
\begin{aligned}
\langle\text { EXPR }\rangle & \longrightarrow\langle\text { EXPR }\rangle+\langle\text { TERM }\rangle \mid\langle\text { TERM }\rangle \\
\langle\text { TERM }\rangle & \longrightarrow\langle\text { TERM }\rangle \times\langle\text { FACTOR }\rangle \mid\langle\text { FACTOR }\rangle \\
\langle\text { FACTOR }\rangle & \longrightarrow(\langle\text { EXPR }\rangle) \mid a
\end{aligned}
$$

Ambiguity

Example

Consider G_{5} :

$$
\langle\mathrm{EXPR}\rangle \longrightarrow\langle\mathrm{EXPR}\rangle+\langle\mathrm{EXPR}\rangle|\langle\mathrm{EXPR}\rangle \times\langle\mathrm{EXPR}\rangle|(\langle\mathrm{EXPR}\rangle) \mid \mathrm{a}
$$

- We have two parse trees for $a+a \times a$.

- If a grammar generates the same in different ways, the string is derived ambiguously in that grammar.
- If a grammar generates some string ambiguously, it is ambiguous.

Ambiguity - Formal Definition

Definition

A string is derived ambiguously in a grammar if it has two or more different leftmost derivations. A grammar is ambiguous if it generates some string ambiguously.

- A derivation is a leftmost derivation if the leftmost variable is the one replaced at every step.
- Two leftmost derivations of $a+a \times a$:

$$
\begin{aligned}
\langle\mathrm{EXPR}\rangle \Rightarrow & \langle\mathrm{EXPR}\rangle \times\langle\mathrm{EXPR}\rangle \Rightarrow\langle\mathrm{EXPR}\rangle+\langle\mathrm{EXPR}\rangle \times\langle\mathrm{EXPR}\rangle \Rightarrow \\
& \mathrm{a}+\langle\mathrm{EXPR}\rangle \times\langle\mathrm{EXPR}\rangle \Rightarrow \mathrm{a}+\mathrm{a} \times\langle\mathrm{EXPR}\rangle \Rightarrow \mathrm{a}+\mathrm{a} \times \mathrm{a} \\
\langle\mathrm{EXPR}\rangle \Rightarrow & \langle\mathrm{EXPR}\rangle+\langle\mathrm{EXPR}\rangle \Rightarrow \mathrm{a}+\langle\mathrm{EXPR}\rangle \Rightarrow \\
& \mathrm{a}+\langle\mathrm{EXPR}\rangle \times\langle\mathrm{EXPR}\rangle \Rightarrow \mathrm{a}+\mathrm{a} \times\langle\mathrm{EXPR}\rangle \Rightarrow \mathrm{a}+\mathrm{a} \times \mathrm{a}
\end{aligned}
$$

- If a language can only be generated by ambiguous grammars, we call it is inherently ambiguous.
- $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i=j\right.$ or $\left.j=k\right\}$ is inherently ambiguous.

Chomsky Normal Form

Definition

A context-free grammar is in Chomsky normal form if every rule is of the form

where a is a terminal, S is the start variable, A is a variable, and B, C are non-start variables.

- A normal form means a uniform representation.
- conjunctive normal form, negative normal form, etc.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Chomsky Normal Form

Proof.

Given a context-free grammar for a context-free language, we will convert the grammar into Chomsky normal form.

- (start variable) Add a new start variable S_{0} and a rule $S_{0} \longrightarrow S$.
- (ϵ-rules) For each ϵ-rule $A \longrightarrow \epsilon\left(A \neq S_{0}\right)$, remove it. Then for each occurrence of A on the right-hand side of a rule, add a new rule with that occurrence deleted.
$R \longrightarrow u A v A w$ becomes $R \longrightarrow u A v A w|u v A w| u A v w \mid u v w$.
- (unit rules) For each unit rule $A \longrightarrow B$, remove it. Add the rule $A \longrightarrow u$ for each $B \longrightarrow u$.
- For each rule $A \longrightarrow u_{1} u_{2} \cdots u_{k}(k \geq 3)$ and u_{i} is a variable or terminal, replace it by $A \longrightarrow u_{1} A_{1}, A_{1} \longrightarrow u_{2} A_{2}, \ldots$, $A_{k-2} \longrightarrow u_{k-1} u_{k}$.
- For each rule $A \longrightarrow u_{1} u_{2}$ with u_{1} a terminal, replace it by $A \longrightarrow U_{1} u_{2}, U_{1} \longrightarrow u_{1}$. Similarly when u_{2} is a terminal.

Chomsky Normal Form - Example

- Consider G_{6} on the left. We add a new start variable on the right.

$$
\begin{array}{rlrl}
S & \longrightarrow A S A \mid \mathrm{aB} & \frac{S_{0}}{S} \longrightarrow S \\
A & \longrightarrow B \mid S & A & \longrightarrow \\
B & \longrightarrow \mathrm{~b} \mid \epsilon & B & \longrightarrow \mathrm{~b} \mid \mathrm{S} \\
B & B
\end{array}
$$

- Remove $B \longrightarrow \epsilon$ (left) and then $A \longrightarrow \epsilon$ (right):

S_{0}	$\longrightarrow S$	S_{0}	$\longrightarrow S$
S	$\longrightarrow A S A\|\mathrm{aB}\| \underline{\mathrm{a}}$	S	$\longrightarrow A S A\|\mathrm{a} B\| \mathrm{a}\|\underline{S A}\| \underline{A S} \mid \underline{S}$
A	$\longrightarrow B\|S\| \underline{\epsilon}$	A	$\longrightarrow B \mid S$
B	$\longrightarrow \mathrm{~b}$	B	$\longrightarrow \mathrm{~b}$

- Remove $S \longrightarrow S$ (left) and then $S_{0} \longrightarrow S$ (right):

S_{0}	$\longrightarrow S$
S	$\longrightarrow A S A\|\mathrm{aB}\| \mathrm{a}\|S A\| A S$
A	$\longrightarrow B \mid S$

Chomsky Normal Form - Example

- Remove $A \longrightarrow B$ (left) and then $A \longrightarrow S$ (right):

| S_{0} | $\longrightarrow A S A\|\mathrm{a} B\| \mathrm{a}\|S A\| A S$ | S_{0} | $\longrightarrow A S A\|\mathrm{aB}\| \mathrm{a}\|S A\| A S$ |
| ---: | :--- | ---: | :--- | :--- |
| S | $\longrightarrow A S A\|\mathrm{aB}\| \mathrm{a}\|S A\| A S$ | S | $\longrightarrow A S A\|\mathrm{aB}\| \mathrm{a}\|S A\| A S$ |
| A | $\longrightarrow S \mid \underline{\mathrm{b}}$ | A | $\longrightarrow \underline{\mathrm{~b}}\|A S A\| \underline{\mathrm{a} B}\|\underline{\mathrm{a}}\| \underline{S A} \mid \underline{A S}$ |
| B | $\longrightarrow \mathrm{~b}$ | B | $\longrightarrow \mathrm{~b}$ |

- Remove $S_{0} \longrightarrow A S A, S \longrightarrow A S A$, and $A \longrightarrow A S A$:

$$
\begin{aligned}
S_{0} & \longrightarrow \underline{A A_{1}|\mathrm{a} B| \mathrm{a}|S A| A S} \\
S & \longrightarrow \underline{A A_{1}}|\mathrm{a} B| \mathrm{a}|S A| A S \\
A & \longrightarrow \mathrm{~b} \mid \underline{A A_{1}|\mathrm{a} B| \mathrm{a}|S A| A S} \\
B & \longrightarrow \mathrm{~b} \\
\underline{A_{1}} & \longrightarrow S A
\end{aligned}
$$

- Add $U \longrightarrow a$:

$$
\begin{aligned}
S_{0} & \longrightarrow A A_{1}|\underline{U B}| \mathrm{a}|S A| A S \\
S & \longrightarrow A A_{1}|\underline{U B}| \mathrm{a}|S A| A S \\
A & \longrightarrow \mathrm{~b}\left|A A_{1}\right| \underline{U B}|\mathrm{a}| S A \mid A S \\
B & \longrightarrow \mathrm{~b} \\
\frac{A_{1}}{U} & \longrightarrow S A \\
\underline{U} & \longrightarrow \mathrm{a}
\end{aligned}
$$

Schematic of Pushdown Automata

Figure: Schematic of Pushdown Automata

- A pushdown automaton has a finite set of control states.
- A pushdown automaton reads input symbols from left to right.
- A pushdown automaton has an unbounded stack.
- A pushdown automaton accepts or rejects an input after reading the innut

Pushdown Automata

- Consider $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$.
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
- Computation depends on the content of the stack.
- It is not hard to see I is recognized by a nushdown automaton.

Pushdown Automata

- Consider $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$.
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
- A stack is a last-in-first-out storage.
- Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see L is recognized by a pushdown automaton.

Pushdown Automata - Formal Definition

Definition

A pushdown automaton is a 6 -tuple ($\left.Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where

- Q is the set of states;
- Σ is the input alphabet;
- Γ is the stack alphabet;
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$ is the transition function;
- $q_{0} \in Q$ is the start state; and
- $F \subseteq Q$ is the accept states.
- Recall $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$ and $\Gamma_{\epsilon}=\Gamma \cup\{\epsilon\}$.
- We consider nondeterministic pushdown automata in the definition. It convers deterministic pushdown automata.
- Deterministic pushdown automata are strictly less powerful.
- There is a langauge recognized by only nondeterministic pushdown automata.

Computation of Pushdown Automata

- A pushdown automaton $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts input w if w can be written as $w=w_{1} w_{2} \cdots w_{m}$ with $w_{i} \in \Sigma_{\epsilon}$ and there are sequences of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$ and strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$ such that
- $r_{0}=q_{0}$ and $s_{0}=\epsilon$;
$\star M$ starts with the start state and the empty stack.
- For $0 \leq i<m$, we have $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right), s_{i}=a t$, and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^{*}$.
\star On reading w_{i+1}, M moves from r_{i} with stack at to r_{i+1} with stack $b t$.
\star Write $c, a \rightarrow b\left(c \in \Sigma_{\epsilon}\right.$ and $\left.a, b \in \Gamma_{\epsilon}\right)$ to denote that the machine is reading c from the input and replacing the top of stack a with b.
- $r_{m} \in F$.
$\star M$ is at an accept state after reading w.
- The language recognized by M is denoted by $L(M)$.
- That is, $L(M)=\{w: M$ accepts $w\}$.

Pushdown Automata - Example

- Let $M_{1}=\left(Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$ where
- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{0,1\}, \Gamma=\{0, \$\}, F=\left\{q_{1}, q_{4}\right\}$; and
- δ is the following table:

input	0		1		ϵ				
stack	0	$\$$	ϵ	0	$\$$	ϵ	0	$\$$	ϵ
q_{1}									
q_{2}				$\left\{\left(q_{3}, \epsilon\right)\right\}$		$\left(q_{2}, \$\right)$			
q_{3}				$\left\{\left(q_{3}, \epsilon\right)\right\}$		$\left(q_{4}, \epsilon\right)$			
q_{4}									

Pushdown Automata - Example

- Let $M_{1}=\left(Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$ where
- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{0,1\}, \Gamma=\{0, \$\}, F=\left\{q_{1}, q_{4}\right\}$; and
- δ is the following table:

- $L\left(M_{1}\right)=\left\{0^{n} 1^{n}: n \geq 0\right\}$

Pushdown Automata - Example

- Consider the following pushdown automaton M_{2} :

- $L\left(M_{2}\right)=\left\{a^{i} b^{j} c^{k}: i, j, k \geq 0\right.$ and, $i=j$ or $\left.i=k\right\}$

Pushdown Automata - Example

- Consider the following pushdown automaton M_{2} :

- $L\left(M_{2}\right)=\left\{a^{i} \mathrm{~b}^{j} \mathrm{C}^{k}: i, j, k \geq 0\right.$ and, $i=j$ or $\left.i=k\right\}$

Context-Free Grammars and Pushdown Automata

Lemma

If a language is context-free, some pushdown automaton recognizes it.

Proof.

Let $G=(V, \Sigma, R, S)$ be a context-free grammar generating the language. Define
$P=\left(\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}, \ldots\right\}, \Sigma, V \cup \Sigma \cup\{\$\}, \delta, q_{\text {start }},\left\{q_{\text {accept }}\right\}\right)$ where

- $\delta\left(q_{\text {start }}, \epsilon, \epsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$
- $\delta\left(q_{\text {loop }}, \epsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right): A \longrightarrow w \in R\right\}$
- $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \epsilon\right)\right\}$
- $\delta\left(q_{\text {loop }}, \epsilon, \$\right)=\left\{\left(q_{\text {accept }}, \epsilon\right)\right\}$

Note that $\left(r, u_{1} u_{2} \cdots u_{l}\right) \in \delta(q, a, s)$ is simulated by $\left(q_{1}, u_{l}\right) \in \delta(q, a, s)$, $\delta\left(q_{1}, \epsilon, \epsilon\right)=\left\{\left(q_{2}, u_{l-1}\right)\right\}, \ldots, \delta\left(q_{l-1}, \epsilon, \epsilon\right)=\left\{\left(r, u_{1}\right)\right\}$.

Example

Example

Find a pushdown automaton recognizing the language of the following context-free grammar:

$$
\begin{aligned}
& S \longrightarrow \mathrm{aTb} \mid \mathrm{b} \\
& T \longrightarrow \mathrm{Ta} \mid \epsilon
\end{aligned}
$$

Context-Free Grammars and Pushdown Automata

Lemma

If a pushdown automaton recognizes a language, the language is context-free.

Proof.

Without loss of generality, we consider a pushdown automaton that has a single accept state $q_{\text {accept }}$ and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol at any time. Let $P=\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$. Define the context-free grammar $G=(V, \Sigma, R, S)$ where

- $V=\left\{A_{p q}: p, q \in Q\right\}, S=A_{q_{0}, q_{\text {accepp }} ;} ;$ and
- R has the following rules:

For each $p, q, r, s \in Q, t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$, then $A_{p q} \longrightarrow a A_{r s} b \in R$.
For each $p, q, r \in Q, A_{p q} \longrightarrow A_{p r} A_{r q} \in R$.
For each $p \in Q, A_{p p} \longrightarrow \epsilon \in R$.

Example

- We write $A_{i, j}$ for $A_{q_{i} q_{j}}$.
- Consider the following context-free grammar:

$$
\begin{array}{ll}
A_{14} \rightarrow A_{23} & \text { since }\left(q_{2}, \$\right) \in \delta\left(q_{1}, \epsilon, \epsilon\right) \text { and }\left(q_{4}, \epsilon\right) \in \delta\left(q_{3}, \epsilon, \$\right) \\
A_{23} \rightarrow 0 A_{23} 1 & \text { since }\left(q_{2}, 0\right) \in \delta\left(q_{2}, 0, \epsilon\right) \text { and }\left(q_{3}, \epsilon\right) \in \delta\left(q_{3}, 1,0\right) \\
A_{23} \rightarrow 0 A_{22} 1 & \text { since }\left(q_{2}, 0\right) \in \delta\left(q_{2}, 0, \epsilon\right) \text { and }\left(q_{3}, \epsilon\right) \in \delta\left(q_{2}, 1,0\right) \\
A_{22} \rightarrow \epsilon &
\end{array}
$$

Context-Free Grammars and Pushdown Automata

Lemma

If $A_{p q}$ generates x in G, then x can bring P from p with empty stack to q with empty stack.

Proof.

Prove by induction on the length k of derivation.

- $k=1$. The only possible derivation of length 1 is $A_{p p} \Rightarrow \epsilon$.
- Consider $A_{p q} \xrightarrow{*} x$ of length $k+1$. Two cases for the first step:
$A_{p q} \Rightarrow a A_{r s} b$. Then $x=a y b$ with $A_{r s} \stackrel{*}{\Rightarrow} y$. By IH, y brings P from r to s with empty stack. Moreover, $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ since $A_{p q} \longrightarrow a A_{r s} b \in R$. Let P start from p with empty stack, P first moves to r and pushes t to the stack after reading a. It then moves to s with t in the stack. Finally, P moves to q with empty stack after reading b and popping t.
$A_{p q} \Rightarrow A_{p r} A_{r q}$. Then $x=y z$ with $A_{p r} \stackrel{*}{\Longrightarrow} y$ and $A_{r q} \stackrel{*}{\Longrightarrow} z$. By IH, P moves from p to r, and then r to q.

Context-Free Grammars and Pushdown Automata

Lemma

If x can bring P from p with empty stack to q with empty stack, $A_{p q}$ generates x in G.

Proof.

Prove by induction on the length k of computation.

- $k=0$. The only possible 0 -step computation is to stay at the same state while reading ϵ. Hence $x=\epsilon$. Clearly, $A_{p p} \xlongequal{*} \epsilon$ in G.
- Two possible cases for computation of length $k+1$.

The stack is empty only at the beginning and end of the computation. If P reads a, pushes t, and moves to r from p at step $1,(r, t) \in \delta(q, a, \epsilon)$. Similarly, if P reads b, pops t, and moves to q from s at step $k+1,(q, \epsilon) \in \delta(s, b, t)$. Hence $A_{p q} \longrightarrow a A_{r s} b \in G$. Let $x=a y b$. By IH, $A_{r s} \stackrel{*}{\Longrightarrow} y$. We have $A_{p q} \xrightarrow{*} x$. The stack is empty elsewhere. Let r be a state where the stack becomes empty. Say y and z are the inputs read during the computation from p to r and r to q respectively. Hence $x=y z$. By IH, $A_{p r} \stackrel{*}{\Longrightarrow} y$ and $A_{r q} \stackrel{*}{\Longrightarrow} z$. Since $A_{p q} \longrightarrow A_{p r} A_{r q} \in G$. We have $A_{p q} \stackrel{*}{\longrightarrow} x$.

Context-Free Grammars and Pushdown Automata

Theorem
 A language is context-free if and only if some pushdown automaton recognizes it.

Corollary

Every regular language is context-free.

Pumping Lemma

Theorem

If A is a context-free language, then there is a number p (the puming length) such that for every $s \in A$ with $|s| \geq p$, there is a partition $s=u v x y z$ that
(1) for each $i \geq 0, u v^{i} x y^{i} z \in A$;
(2) $|v y|>0$; and
(3) $|v x y| \leq p$.

Proof.

Let $G=(V, \Sigma, R, T)$ be a context-free grammar for A. Define b to be the maximum number of symbols in the right-hand side of a rule. Observe that a parse tree of height h has at most b^{h} leaves and hence can generate strings of length at most b^{h}.
Choose $p=b^{|V|+1}$. Let $s \in A$ with $|s| \geq p$ and τ the smallest parse tree for s. Then the height of $\tau \geq|V|+1$. There are $|V|+1$ variables along the longest branch. A variable R must appear twice.

Pumping Lemma

(a) Smallest parse tree τ

(b) A parse tree if $|v y|=0$

Figure: Pumping Lemma

Proof. (cont'd).

From Figure (a), we see $u v^{i} x y^{i} z \in A$ for $i \geq 0$. Suppose $|v y|=0$. Then Figure (b) is a smaller parse tree than τ. A contradiction. Hence $|v y|>0$.
Finally, recall R is in the longest branch of length $|V|+1$. Hence the subtree R generating $v x y$ has height $\leq|V|+1 .|v x y| \leq b^{|V|+1}=p$.

Pumping Lemma - Examples

Example

Show $B=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n}: n \geq 0\right\}$ is not a context-free language.

Proof.

Let p be the pumping length. $s=a^{p} b^{p} c^{p} \in B$. Consider a partition $s=u v x y z$ with $|v y|>0$. There are two cases:

- v or y contain more than one type of symbol. Then $u v^{2} x y^{2} z \notin B$.
- v and y contain only one type of symbol. Then one of a, b, or c does not appear in v nor y (pigeon hole principle). Hence $u v^{2} x y^{2} z \notin B$ for $|v y|>0$.

Pumping Lemma - Examples

Example

Show $C=\left\{a^{i} b^{j} c^{k}: 0 \leq i \leq j \leq k\right\}$ is not a context-free language.

Proof.

Let p be the pumping length and $s=a^{p} b^{p} C^{p} \in C$. Consider any partition $s=u v x y z$ with $|v y|>0$. There are two cases:

- v or y contain more than one type of symbol. Then $u v^{2} x y^{2} z \notin C$.
- v and y contain only one type of symbol. Then one of a, b, or c does not appear in v nor y. We have three subcases:
a does not appear in v nor $y . u x z \notin C$ for it has more a then b or c . b does not appear in v nor y. Since $|v y|>0$, a or c must appear in v or y. If a appears, $u v^{2} x y^{2} z \notin \mathrm{C}$ for it has more a than b . If c appears, $u x y \notin C$ for it has more b than c.
c does not appear in v nor $y . u v^{2} x y^{2} z \notin C$ for it has less c than a or b.

Pumping Lemma - Examples

Example

Show $D=\left\{w w: w \in\{0,1\}^{*}\right\}$ is not a context-free language.

Proof.

Let p be the pumping length and $s=0^{p} 1^{p} 0^{p} 1^{p}$. Consider a partition $s=u v x y z$ with $|v y|>0$ and $|v x y| \leq p$.
vxy
If $0 \cdots 0 \overbrace{0 \cdots 01 \cdots 1} 1 \cdots 10^{p} 1^{p}, u v^{2} x y^{2} z$ moves 1 into the second half and thus $u v^{2} x y^{2} z \notin D$. Similarly, $u v^{2} x y^{2} z$ moves 0 into the first half if vxy
$0^{p} 1^{p} 0 \cdots 0 \overbrace{0 \cdots 01 \cdots 1} 1 \cdots 1$.
It remains to consider $0^{p} 1 \cdots 1 \overbrace{1 \cdots 10 \cdots 0} 0 \cdots 01^{p}$. But then $u x z=0^{p} 1^{i} 0^{j}{ }^{p} p$ with $i<p$ or $j<p$ for $|v y|>0 . u x z \notin D$.

