Theory of Computation Context-Free Languages

Yu-Fang Chen

Academia Sinica

Spring 2019

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

Spring 2019 1 / 32

• Here is an example of a context-free grammar *G*₁:

$$\begin{array}{cccc} A & \longrightarrow & 0A1 \\ A & \longrightarrow & B \\ B & \longrightarrow & \# \end{array}$$

- Each line is a substitution rule (or production).
- *A*, *B* are variables.
- 0, 1, # are terminals.
- The left-hand side of the first rule (*A*) is the start variable.

- A grammar describes a language.
- A grammar generates a string of its language as follows.
 - Write down the start variable.
 - Find a written variable and a rule whose left-hand side is that variable.
 - Solution Replace the written variable with the right-hand side of the rule.
 - Repeat steps 2 and 3 until no variable remains.
- Any language that can be generated by some context-free grammar is called a <u>context-free language</u>.

Grammars and Languages

• For example, consider the following <u>derivation</u> of the string 00#11 generated by G_1 :

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00\#11$

• We also use a <u>parse tree</u> to denote a string generated by a grammar:

Context-Free Grammars – Formal Definition

Definition

A <u>context-free grammar</u> is a 4-tuple (V, Σ, R, S) where

- *V* is a finite set of <u>variables;</u>
- Σ is a finite set of terminals where $V \cap \Sigma = \emptyset$;
- *R* is a fintie set of rules. Each rule consists of a variable and a string of variables and terminals; and
- $S \in V$ is the start variable.
- Let u, v, w are strings of variables and terminals, and $A \longrightarrow w$ a rule. We say uAv yields uwv (written $uAv \Rightarrow uwv$).
- $u \stackrel{\text{derives}}{\longrightarrow} v$ (written $u \stackrel{*}{\Longrightarrow} v$) if u = v or there is a sequence $u_1, u_2, \dots, u_k \ (k \ge 0)$ that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$.
- The <u>language</u> of the grammar is $\{w \in \Sigma^* : S \stackrel{*}{\Longrightarrow} w\}$.

・ロト ・ 同ト ・ 三ト ・

Example

Consider $G_3 = (\{S\}, \{(,)\}, R, S)$ where *R* is

$$S \longrightarrow (S) \mid SS \mid \epsilon.$$

• $A \longrightarrow w_1 \mid w_2 \mid \cdots \mid w_k$ stands for

$$\begin{array}{cccc} A & \longrightarrow & w_1 \\ A & \longrightarrow & w_2 \\ & & \vdots \\ A & \longrightarrow & w_k \end{array}$$

• Examples of the strings generated by *G*₃: *ϵ*, (), (())(),

Context-Free Languages – Examples

- From a DFA *M*, we can construct a context-free grammar *G*_{*M*} such that the language of *G* is *L*(*M*).
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Define $G_M = (V, \Sigma, P, S)$ where

▶
$$V = \{R_i : q_i \in Q\}$$
 and $S = \{R_0\}$; and

- ► $P = \{R_i \longrightarrow aR_j : \delta(q_i, a) = q_j\} \cup \{R_i \longrightarrow \epsilon : q_i \in F\}.$
- Recall M_3 and construct $G_{M_3} = (\{R_1, R_2\}, \{0, 1\}, P, \{R_1\})$ with

$$\begin{array}{rrrr} R_1 & \longrightarrow & 0R_1 \mid 1R_2 \mid \epsilon \\ R_2 & \longrightarrow & 0R_1 \mid 1R_2. \end{array}$$

Context-Free Languages – Examples

Example

Consider $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$ where

• $V = \{ \langle \text{EXPR} \rangle, \langle \text{TERM} \rangle, \langle \text{FACTOR} \rangle \}, \Sigma = \{a, +, \times, (,)\}; \text{ and}$ • *R* is

Ambiguity

Example

Consider G₅:

$\langle \text{EXPR} \rangle \longrightarrow \langle \text{EXPR} \rangle + \langle \text{EXPR} \rangle \mid \langle \text{EXPR} \rangle \times \langle \text{EXPR} \rangle \mid (\langle \text{EXPR} \rangle) \mid \text{a}$

• If a grammar generates the same in different ways, the string is derived ambiguously in that grammar.

• If a grammar generates some string ambiguously, it is <u>ambiguous</u>.

а

(EXPR)

а

(EXPR)

а

(EXPR)

а

(EXPR)

а

×

Ambiguity – Formal Definition

Definition

A string is derived <u>ambiguously</u> in a grammar if it has two or more different leftmost derivations. A grammar is <u>ambiguous</u> if it generates some string ambiguously.

- A derivation is a <u>leftmost</u> derivation if the leftmost variable is the one replaced at every step.
- Two leftmost derivations of $a + a \times a$:
 - $\begin{array}{lll} \langle EXPR \rangle & \Rightarrow & \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow \\ & a + \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow a + a \times \langle EXPR \rangle \Rightarrow a + a \times a \\ \langle EXPR \rangle & \Rightarrow & \langle EXPR \rangle + \langle EXPR \rangle \Rightarrow a + \langle EXPR \rangle \Rightarrow \\ & a + \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow a + a \times \langle EXPR \rangle \Rightarrow a + a \times a \end{array}$
- If a language can only be generated by ambiguous grammars, we call it is inherently ambiguous.
 - { $a^i b^j c^k : i = j \text{ or } j = k$ } is inherently ambiguous.

Chomsky Normal Form

Definition

A context-free grammar is in <u>Chomsky normal form</u> if every rule is of the form

 $\begin{array}{cccc} S & \longrightarrow & \epsilon \\ A & \longrightarrow & BC \\ A & \longrightarrow & a \end{array}$

where a is a terminal, *S* is the start variable, *A* is a variable, and *B*, *C* are non-start variables.

- A normal form means a uniform representation.
 - conjunctive normal form, negative normal form, etc.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Chomsky Normal Form

Proof.

Given a context-free grammar for a context-free language, we will convert the grammar into Chomsky normal form.

- (start variable) Add a new start variable S_0 and a rule $S_0 \rightarrow S$.
- (ϵ -rules) For each ϵ -rule $A \longrightarrow \epsilon (A \neq S_0)$, remove it. Then for each occurrence of A on the right-hand side of a rule, add a new rule with that occurrence deleted.

 $R \longrightarrow uAvAw \text{ becomes } R \longrightarrow uAvAw \mid uvAw \mid uAvw \mid uvw.$

- (unit rules) For each unit rule $A \longrightarrow B$, remove it. Add the rule $A \longrightarrow u$ for each $B \longrightarrow u$.
- For each rule $A \longrightarrow u_1 u_2 \cdots u_k (k \ge 3)$ and u_i is a variable or terminal, replace it by $A \longrightarrow u_1 A_1, A_1 \longrightarrow u_2 A_2, \ldots, A_{k-2} \longrightarrow u_{k-1} u_k$.
- For each rule $A \longrightarrow u_1 u_2$ with u_1 a terminal, replace it by $A \longrightarrow U_1 u_2, U_1 \longrightarrow u_1$. Similarly when u_2 is a terminal.

Chomsky Normal Form – Example

• Consider *G*⁶ on the left. We add a new start variable on the right.

Chomsky Normal Form – Example

• Remove $A \longrightarrow B$ (left) and then $A \longrightarrow S$ (right):

$$S_{0} \longrightarrow ASA | aB | a | SA | AS \qquad S_{0} \longrightarrow ASA | aB | a | SA | AS
S \longrightarrow ASA | aB | a | SA | AS \qquad S \longrightarrow ASA | aB | a | SA | AS
A \longrightarrow S | b \qquad A \longrightarrow b | ASA | aB | a | SA | AS
B \longrightarrow b \qquad B \longrightarrow b$$
• Remove $S_{0} \longrightarrow ASA, S \longrightarrow ASA, \text{ and } A \longrightarrow ASA$:

$$S_{0} \longrightarrow AA_{1} | aB | a | SA | AS
S \longrightarrow AA_{1} | aB | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
S \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$
• Add $U \longrightarrow a$:

$$S_{0} \longrightarrow AA_{1} | \underline{UB} | a | SA | AS
A \longrightarrow b | AA_{1} | \underline{UB} | a | SA | AS
A \longrightarrow b | AA_{1} | \underline{UB} | a | SA | AS
B \longrightarrow b
A_{1} \longrightarrow SA$$

Schematic of Pushdown Automata

Figure: Schematic of Pushdown Automata

- A pushdown automaton has a finite set of control states.
- A pushdown automaton reads input symbols from left to right.
- A pushdown automaton has an unbounded stack.
- A pushdown automaton accepts or rejects an input after reading the input

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
 - A stack is a last-in-first-out storage.
 - Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see *L* is recognized by a pushdown automaton.

- Consider $L = \{0^n 1^n : n \ge 0\}.$
- We have the following table:

Language	Automata
Regular	Finite
Context-free	Pushdown

- A pushdown automaton is a finite automaton with a stack.
 - A stack is a last-in-first-out storage.
 - Stack symbols can be pushed and poped from the stack.
- Computation depends on the content of the stack.
- It is not hard to see *L* is recognized by a pushdown automaton.

Pushdown Automata - Formal Definition

Definition

- A <u>pushdown automaton</u> is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where
 - *Q* is the set of <u>states;</u>
 - Σ is the input alphabet;
 - Γ is the stack alphabet;
 - $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the <u>transition function</u>;
 - $q_0 \in Q$ is the <u>start</u> state; and
 - $F \subseteq Q$ is the <u>accept</u> states.
 - Recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$.
 - We consider nondeterministic pushdown automata in the definition. It convers deterministic pushdown automata.
 - Deterministic pushdown automata are strictly less powerful.
 - There is a langauge recognized by only nondeterministic pushdown automata.

Computation of Pushdown Automata

- A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w if w can be written as $w = w_1 w_2 \cdots w_m$ with $w_i \in \Sigma_{\epsilon}$ and there are sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ such that
 - $r_0 = q_0$ and $s_0 = \epsilon$;

★ *M* starts with the start state and the empty stack.

- ► For $0 \le i < m$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, $s_i = at$, and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$.
 - * On reading w_{i+1} , *M* moves from r_i with stack *at* to r_{i+1} with stack *bt*.
 - ★ Write $c, a \rightarrow b(c \in \Sigma_{\epsilon} \text{ and } a, b \in \Gamma_{\epsilon})$ to denote that the machine is reading *c* from the input and replacing the top of stack *a* with *b*.
- ▶ $r_m \in F$.
 - * M is at an accept state after reading w.
- The language recognized by *M* is denoted by *L*(*M*).
 - That is, $L(M) = \{w : M \text{ accepts } w\}.$

▶ < 토 ▶ < 토</p>

Pushdown Automata – Example

• Let
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
 where

• $Q = \{q_1, q_2, q_3, q_4\}, \Sigma = \{0, 1\}, \Gamma = \{0, \$\}, F = \{q_1, q_4\}; \text{ and }$

• δ is the following table:

	input	0			1			ϵ		
	stack	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ
	q_1									$\{(q_2,\$)\}$
	q_2			$\{(q_2, 0)\}$	$\{(q_3,\epsilon)\}$					
	q_3				$\{(q_3,\epsilon)\}$				$\{(q_4,\epsilon)\}$	
	q_4									
$\begin{array}{c} \hline q_1 \\ \hline \\ \hline \\ \\ \hline \\ \\ 1, 0 \rightarrow \epsilon \end{array} \xrightarrow{\epsilon, \epsilon \rightarrow \$} \hline \hline \\ q_2 \\ \hline \\ 0, \epsilon \rightarrow 0 \\ \hline \\ 0, \epsilon \rightarrow 0 \end{array}$										
$ \begin{array}{c} $										
• $L(M_1$	$) = \{0^n$: n	$\geq 0\}$			•		 (□) × (Ξ) × (≣। ≡ <i>•</i> 0२(

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

Pushdown Automata – Example

• Let
$$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$$
 where

• $Q = \{q_1, q_2, q_3, q_4\}, \Sigma = \{0, 1\}, \Gamma = \{0, \$\}, F = \{q_1, q_4\}; \text{ and}$

• δ is the following table:

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

Spring 2019 19 / 32

• Consider the following pushdown automaton *M*₂:

• $L(M_2) = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and, } i = j \text{ or } i = k \}$

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

• Consider the following pushdown automaton *M*₂:

• $L(M_2) = \{ a^i b^j c^k : i, j, k \ge 0 \text{ and, } i = j \text{ or } i = k \}$

Lemma

If a language is context-free, some pushdown automaton recognizes it.

Proof.

Let $G = (V, \Sigma, R, S)$ be a context-free grammar generating the language. Define

- $P = (\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}, \ldots\}, \Sigma, V \cup \Sigma \cup \{\$\}, \delta, q_{\text{start}}, \{q_{\text{accept}}\}) \text{ where }$
 - $\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}$
 - $\delta(q_{\text{loop}}, \epsilon, A) = \{(q_{\text{loop}}, w) : A \longrightarrow w \in R\}$
 - $\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \epsilon)\}$
 - $\delta(q_{\text{loop}}, \epsilon, \$) = \{(q_{\text{accept}}, \epsilon)\}$

Note that $(r, u_1u_2 \cdots u_l) \in \delta(q, a, s)$ is simulated by $(q_1, u_l) \in \delta(q, a, s)$, $\delta(q_1, \epsilon, \epsilon) = \{(q_2, u_{l-1})\}, \ldots, \delta(q_{l-1}, \epsilon, \epsilon) = \{(r, u_1)\}.$

イロト イポト イヨト イヨト

Example

Example

Find a pushdown automaton recognizing the language of the following context-free grammar:

$$\begin{array}{ccc} S & \longrightarrow & \mathrm{a}T\mathrm{b} \mid \mathrm{b} \ T & \longrightarrow & T\mathrm{a} \mid \epsilon \end{array}$$

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

Lemma

If a pushdown automaton recognizes a language, the language is context-free.

Proof.

Without loss of generality, we consider a pushdown automaton that has a single accept state q_{accept} and empties the stack before accepting. Moreover, its transition either pushes or pops a stack symbol at any time. Let $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$. Define the context-free grammar $G = (V, \Sigma, R, S)$ where

•
$$V = \{A_{pq} : p, q \in Q\}, S = A_{q_0, q_{accept}};$$
 and

• *R* has the following rules:

- For each $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, t) \in \delta(p, a, \epsilon)$ and
- $(q,\epsilon) \in \delta(s,b,t)$, then $A_{pq} \longrightarrow aA_{rs}b \in R$.
- For each $p, q, r \in Q$, $A_{pq} \longrightarrow A_{pr}A_{rq} \in R$.
- For each $p \in Q$, $A_{pp} \longrightarrow \epsilon \in R$.

- We write $A_{i,j}$ for $A_{q_iq_j}$.
- Consider the following context-free grammar:

$$\begin{array}{rcl} A_{14} & \rightarrow & A_{23} & \text{since } (q_2, \$) \in \delta(q_1, \epsilon, \epsilon) \text{ and } (q_4, \epsilon) \in \delta(q_3, \epsilon, \$) \\ A_{23} & \rightarrow & 0A_{23} 1 & \text{since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_3, 1, 0) \\ A_{23} & \rightarrow & 0A_{22} 1 & \text{since } (q_2, 0) \in \delta(q_2, 0, \epsilon) \text{ and } (q_3, \epsilon) \in \delta(q_2, 1, 0) \\ A_{22} & \rightarrow & \epsilon \end{array}$$

▶ < 프 ▶ < 프 ▶</p>

Lemma

If A_{pq} generates x in G, then x can bring P from p with empty stack to q with empty stack.

Proof.

Prove by induction on the length k of derivation.

- k = 1. The only possible derivation of length 1 is $A_{pp} \Rightarrow \epsilon$.
- Consider $A_{pq} \Longrightarrow x$ of length k + 1. Two cases for the first step:
 - $A_{pq} \Rightarrow aA_{rs}b$. Then x = ayb with $A_{rs} \stackrel{*}{\Longrightarrow} y$. By IH, y brings P from r to s with empty stack. Moreover, $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ since $A_{pq} \longrightarrow aA_{rs}b \in R$. Let P start from p with empty stack, P first moves to r and pushes t to the stack after reading a. It then moves to s with t in the stack. Finally, P moves to q with empty stack after reading b and popping t.
 - $A_{pq} \Rightarrow A_{pr}A_{rq}$. Then x = yz with $A_{pr} \stackrel{*}{\Longrightarrow} y$ and $A_{rq} \stackrel{*}{\Longrightarrow} z$. By IH, *P* moves from *p* to *r*, and then *r* to *q*.

Yu-Fang Chen (Academia Sinica)

Context-Free Languages

Context-Free Grammars and Pushdown Automata

Lemma

If x can bring P from p with empty stack to q with empty stack, A_{pq} generates x in G.

Proof.

Prove by induction on the length *k* of computation.

- k = 0. The only possible 0-step computation is to stay at the same state while reading ϵ . Hence $x = \epsilon$. Clearly, $A_{pp} \stackrel{*}{\Longrightarrow} \epsilon$ in *G*.
- Two possible cases for computation of length k + 1.
 - The stack is empty only at the beginning and end of the computation. If *P* reads *a*, pushes *t*, and moves to *r* from *p* at step 1, $(r, t) \in \delta(q, a, \epsilon)$. Similarly, if *P* reads *b*, pops *t*, and moves to *q* from *s* at step k + 1, $(q, \epsilon) \in \delta(s, b, t)$. Hence $A_{pq} \longrightarrow aA_{rs}b \in G$. Let x = ayb. By IH, $A_{rs} \stackrel{*}{\Longrightarrow} y$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$. The stack is empty elsewhere. Let *r* be a state where the stack becomes empty. Say *y* and *z* are the inputs read during the computation from *p* to *r* and *r* to *q* respectively. Hence x = yz. By IH, $A_{pr} \stackrel{*}{\Longrightarrow} y$ and $A_{rq} \stackrel{*}{\Longrightarrow} z$. Since $A_{pq} \longrightarrow A_{pr}A_{rq} \in G$. We have $A_{pq} \stackrel{*}{\Longrightarrow} x$.

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Corollary

Every regular language is context-free.

Pumping Lemma

Theorem

If A is a context-free language, then there is a number p (*the puming length*) *such that for every* $s \in A$ *with* $|s| \ge p$ *, there is a partition* s = uvxyz *that*

- for each $i \ge 0$, $uv^i xy^i z \in A$;
- **2** |vy| > 0; and
- $|vxy| \le p.$

Proof.

Let $G = (V, \Sigma, R, T)$ be a context-free grammar for A. Define b to be the maximum number of symbols in the right-hand side of a rule. Observe that a parse tree of height h has at most b^h leaves and hence can generate strings of length at most b^h . Choose $p = b^{|V|+1}$. Let $s \in A$ with $|s| \ge p$ and τ the smallest parse tree for s. Then the height of $\tau \ge |V| + 1$. There are |V| + 1 variables along the longest branch. A variable R must appear twice.

Pumping Lemma

Figure: Pumping Lemma

Proof. (cont'd).

From Figure (a), we see $uv^i xy^i z \in A$ for $i \ge 0$. Suppose |vy| = 0. Then Figure (b) is a smaller parse tree than τ . A contradiction. Hence |vy| > 0. Finally, recall *R* is in the longest branch of length |V| + 1. Hence the subtree *R* generating vxy has height $\le |V| + 1$. $|vxy| \le b^{|V|+1} = p$.

Example

Show $B = \{a^n b^n c^n : n \ge 0\}$ is not a context-free language.

Proof.

Let *p* be the pumping length. $s = a^p b^p c^p \in B$. Consider a partition s = uvxyz with |vy| > 0. There are two cases:

- *v* or *y* contain more than one type of symbol. Then $uv^2xy^2z \notin B$.
- *v* and *y* contain only one type of symbol. Then one of a, b, or c does not appear in *v* nor *y* (pigeon hole principle). Hence uv²xy²z ∉ B for |vy| > 0.

イロト イポト イヨト イヨト

Pumping Lemma – Examples

Example

Show $C = \{a^i b^j c^k : 0 \le i \le j \le k\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = a^p b^p c^p \in C$. Consider any partition s = uvxyz with |vy| > 0. There are two cases:

- *v* or *y* contain more than one type of symbol. Then $uv^2xy^2z \notin C$.
- *v* and *y* contain only one type of symbol. Then one of a, b, or c does not appear in *v* nor *y*. We have three subcases:
 - a does not appear in *v* nor *y*. $uxz \notin C$ for it has more a then b or c.
 - b does not appear in v nor y. Since |vy| > 0, a or c must appear in v or y. If a appears, $uv^2xy^2z \notin C$ for it has more a than b. If c appears, $uxy \notin C$ for it has more b than c.

c does not appear in v nor y. $uv^2xy^2z \notin C$ for it has less c than a or b.

Example

Show $D = \{ww : w \in \{0, 1\}^*\}$ is not a context-free language.

Proof.

Let *p* be the pumping length and $s = 0^p 1^p 0^p 1^p$. Consider a partition s = uvxyz with |vy| > 0 and $|vxy| \le p$. If $0 \cdots 0 \overline{0 \cdots 01 \cdots 1} 1 \cdots 10^p 1^p$, uv^2xy^2z moves 1 into the second half and thus $uv^2xy^2z \notin D$. Similarly, uv^2xy^2z moves 0 into the first half if $0^p 1^p 0 \cdots 0 \overline{0 \cdots 01 \cdots 1} 1 \cdots 1$. It remains to consider $0^p 1 \cdots 1 \overline{1 \cdots 10 \cdots 0} 0 \cdots 01^p$. But then $uxz = 0^p 1^i 0^j 1^p$ with i < p or j < p for |vy| > 0. $uxz \notin D$.

Yu-Fang Chen (Academia Sinica)

< □ > < □ > < □ > < □ > <