
Regular Languages
(Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management
National Taiwan University

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 1 / 39

Schematic of Finite Automata

control

0 01 1 0110

Figure: Schematic of Finite Automata

A finite automaton has a finite set of control states.
A finite automaton reads input symbols from left to right.
A finite automaton accepts or rejects an input after reading
the input.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 2 / 39

Finite Automaton M1

1

q1 q2 q3

0

0,1

1

0

Figure: A Finite Automaton M1

The state diagram of a finite automaton M1. M1 has
3 states: q1,q2,q3;
a start state: q1;
a accept state: q2;

6 transitions: q1
0−→ q1, q1

1−→ q2, q2
1−→ q2, q2

0−→ q3,
q3

0−→ q2, and q3
1−→ q2.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 3 / 39

Accepted and Rejected String
1

q1 q2 q3

0

0,1

1

0

Consider an input string 1100.
M1 processes the string from the start state q1.
It takes the transition labeled by the current symbol and
moves to the next state.
At the end of the string, there are two cases:

If M1 is at an accept state, M1 outputs accept;
Otherwise, M1 outputs reject.

Strings accepted by M1: 1,01,11,1100,1101,
Strings rejected by M1: 0,00,10,010,1010,

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 4 / 39

Finite Automaton – Formal Definition

A finite automaton is a 5-tuple (Q,Σ, δ,q0,F) where
Q is a finite set of states;
Σ is a finite set called alphabet;
δ : Q × Σ→ Q is the transition function;
q0 ∈ Q is the start state; and
F ⊆ Q is the set of accept states.

Accept states are also called final states.
The set of all strings that M accepts is called the language
of machine M (written L(M)).

Recall a language is a set of strings.

We also say M recognizes (or accepts) L(M).

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 5 / 39

M1 – Formal Definition

A finite automaton M1 = (Q,Σ, δ,q1,F) consists of
Q = {q1,q2,q3};
Σ = {0,1};
δ : Q × Σ→ Q is

0 1
q1 q1 q2
q2 q3 q2
q3 q2 q2

q1 is the start state; and
F = {q2}.

Moreover, we have

L(M1) = {w : w contains at least one 1 and
an even number of 0’s follow the last 1}

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 6 / 39

Finite Automaton M2
0

q1 q2

0

1
1

Figure: Finite Automaton M2

M2 = ({q1,q2}, {0,1}, δ,q1, {q2}) where δ is

0 1
q1 q1 q2

q2 q1 q2

What is L(M2)?

L(M2) = {w : w ends in a 1}.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 7 / 39

Finite Automaton M2
0

q1 q2

0

1
1

Figure: Finite Automaton M2

M2 = ({q1,q2}, {0,1}, δ,q1, {q2}) where δ is

0 1
q1 q1 q2

q2 q1 q2

What is L(M2)?
L(M2) = {w : w ends in a 1}.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 7 / 39

Finite Automaton M3
0

q1 q2

0

1
1

Figure: Finite Automaton M3

M3 = ({q1,q2}, {0,1}, δ,q1, {q1}) where δ is

0 1
q1 q1 q2

q2 q1 q2

What is L(M3)?

L(M3) = {w : w is the empty string ε or ends in a 0}.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 8 / 39

Finite Automaton M3
0

q1 q2

0

1
1

Figure: Finite Automaton M3

M3 = ({q1,q2}, {0,1}, δ,q1, {q1}) where δ is

0 1
q1 q1 q2

q2 q1 q2

What is L(M3)?
L(M3) = {w : w is the empty string ε or ends in a 0}.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 8 / 39

Finite Automaton M5

q2

1, 〈RESET 〉

1

2

1

0

2

0

2, 〈RESET 〉

0, 〈RESET 〉

q0

q1

Figure: Finite Automaton M5

M5 = ({q0,q1,q2}, {0,1,2, 〈RESET 〉}, δ,q0, {q0}).

Strings accepted by M5:
0,00,12,21,012,102,120,021,201,210,111,222,

M5 computes the sum of input symbols modulo 3. It resets upon
the input symbol 〈RESET 〉. M5 accepts strings who sum is a
multiple of 3.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 9 / 39

Computation – Formal Definition

Let M = (Q,Σ, δ,q0,F) be a finite automaton and
w = w1w2 · · ·wn a string where wi ∈ Σ for every i = 1, . . . ,n.
We say M accepts w if there is a sequence of states
r0, r1, . . . , rn such that

r0 = q0;
δ(ri ,wi+1) = ri+1 for i = 0, . . . ,n − 1; and
rn ∈ F .

M recognizes language A if A = {w : M accepts w}.

Definition
A language is called a regular language if some finite automaton
recognizes it.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 10 / 39

Regular Operations

Definition
Let A and B be languages. We define the following operations:

Union: A ∪ B = {x : x ∈ A or x ∈ B}.
Concatenation: A ◦ B = {xy : x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 · · · xk : k ≥ 0 and every xi ∈ A}.

Note that ε ∈ A∗ for every language A.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 11 / 39

Closure Property – Union

Theorem
The class of regular languages is closed under the union
operation. That is, A1 ∪ A2 is regular if A1 and A2 are.

Proof.
Let Mi = (Qi ,Σ, δi ,qi ,Fi) recognize Ai for i = 1,2. Construct
M = (Q,Σ, δ,q0,F) where

Q = Q1 ×Q2 = {(r1, r2) : r1 ∈ Q1, r2 ∈ Q2};
δ((r1, r2),a) = (δ1(r1,a), δ2(r2,a));
q0 = (q1,q2);
F = (F1×Q2)∪ (Q1×F2) = {(r1, r2) : r1 ∈ F1 or r2 ∈ F2}.

Why is L(M) = A1 ∪ A2?

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 12 / 39

Nondeterminism

When a machine is at a given state and reads an input
symbol, there is precisely one choice of its next state.
This is call deterministic computation.
In nondeterministic machines, multiple choices may exist for
the next state.
A deterministic finite automaton is abbreviated as DFA; a
nondeterministic finite automaton is abbreviated as NFA.
A DFA is also an NFA.
Since NFA allow more general computation, they can be
much smaller than DFA.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 13 / 39

NFA N4

a,b

q1

q2 q3

a

a

b

ε

Figure: NFA N4

On input string baa, N4 has several possible computation:
q1

b−→ q2
a−→ q2

a−→ q2;
q1

b−→ q2
a−→ q2

a−→ q3; or
q1

b−→ q2
a−→ q3

a−→ q1.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 14 / 39

Nondeterministic Finite Automaton – Formal
Definition

For any set Q, P(Q) = {R : R ⊆ Q} denotes the power set
of Q.
For any alphabet Σ, define Σε to be Σ ∪ {ε}.
A nondeterministic finite automaton is a 5-tuple
(Q,Σ, δ,q0,F) where

Q is a finite set of states;
Σ is a finite alphabet;
δ : Q × Σε → P(Q) is the transition function;
q0 ∈ Q is the start state; and
F ⊆ Q is the accept states.

Note that the transition function accepts the empty string as
an input symbol.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 15 / 39

NFA N4 – Formal Definition

a,b

q1

q2 q3

a

a

b

ε

N4 = (Q,Σ, δ,q1, {q1}) is a nondeterministic finite
automaton where

Q = {q1,q2,q3};
Its transition function δ is

ε a b
q1 {q3} ∅ {q2}
q2 ∅ {q2,q3} {q3}
q3 ∅ {q1} ∅

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 16 / 39

Nondeterministic Computation – Formal Definition

Let N = (Q,Σ, δ,q0,F) be an NFA and w a string over Σ.
We say N accepts w if w can be rewritten as
w = y1y2 · · · ym with yi ∈ Σε and there is a sequence of
states r0, r1, . . . , rm such that

r0 = q0;
ri+1 ∈ δ(ri , yi+1) for i = 0, . . . ,m − 1; and
rm ∈ F .

Note that finitely many empty strings can be inserted in w .
Also note that one sequence satisfying the conditions
suffices to show the acceptance of an input string.
Strings accepted by N4: a,baa,

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 17 / 39

Equivalence of NFA’s and DFA’s
Theorem
Every nondeterministic finite automaton has an equivalent
deterministic finite automaton. That is, for every NFA N, there is
a DFA M such that L(M) = L(N).

Proof.
Let N = (Q,Σ, δ,q0,F) be an NFA. For R ⊆ Q, define E(R) =
{q : q can be reached from R along 0 or more ε transitions }.
Construct a DFA M = (Q′,Σ, δ′,q′0,F

′) where
Q′ = P(Q);
δ′(R,a) = {q ∈ Q : q ∈ E(δ(r ,a)) for some r ∈ R};
q′0 = E({q0});
F ′ = {R ∈ Q′ : R ∩ F 6= ∅}.

Why is L(M) = L(N)?
Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 18 / 39

A DFA Equivalent to N4

a,b

q1

q2 q3

a

a

b

ε

b

∅ {q1,q2}

{q1,q2,q3}

a

b

a

a,b
a

{q2}

{q2,q3}

{q1}

{q1,q3}{q3}

ba

b
b

a

b

a,b

a

Figure: A DFA Equivalent to N4
Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 19 / 39

Closure Properties – Revisited

Theorem
The class of regular languages is closed under the union
operation.

Proof.
Let Ni = (Qi ,Σ, δi ,qi ,Fi) recognize Ai for i = 1,2. Construct
N = (Q,Σ, δ,q0,F) where

Q = {q0} ∪Q1 ∪Q2; F = F1 ∪ F2; and

δ(q,a) =


δ1(q,a) q ∈ Q1

δ2(q,a) q ∈ Q2

{q1,q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = L(N1) ∪ L(N2)?

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 20 / 39

Closure Properties – Revisited

Theorem
The class of regular languages is closed under the
concatenation operation.

Proof.
Let Ni = (Qi ,Σ, δi ,qi ,Fi) recognize Ai for i = 1,2. Construct
N = (Q,Σ, δ,q1,F2) where

Q = Q1 ∪Q2; and

δ(q,a) =


δ1(q,a) q ∈ Q1 and q 6∈ F1

δ1(q,a) q ∈ F1 and a 6= ε
δ1(q,a) ∪ {q2} q ∈ F1 and a = ε
δ2(q,a) q ∈ Q2

Why is L(N) = L(N1) ◦ L(N2)?

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 21 / 39

Closure Properties – Revisited
Theorem
The class of regular languages is closed under the star
operation.

Proof.
Let N1 = (Q1,Σ, δ1,q1,F1) recognize A1. Construct
N = (Q,Σ, δ,q0,F) where

Q = {q0} ∪Q1; F = {q0} ∪ F1; and

δ(q,a) =


δ1(q,a) q ∈ Q1 and q 6∈ F1

δ1(q,a) q ∈ F1 and a 6= ε
δ1(q,a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

Why is L(N) = [L(N1)]∗?
Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 22 / 39

Closure Properties – Revisited

Theorem
The class of regular languages is closed under
complementation.

Proof.
Let M = (Q,Σ, δ,q0,F) be a DFA recognizing A. Consider
M = (Q,Σ, δ,q0,Q \ F). We have w ∈ L(M) if and only if
w 6∈ L(M). That is, L(M) = A as required.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 23 / 39

Regular Expressions
Definition
R is a regular expression if R is

a for some a ∈ Σ;
ε;
∅;
(R1 ∪ R2) where Ri ’s are regular expressions;
(R1 ◦ R2) where Ri ’s are regular expressions; or
(R∗1) where R1 is a regular expression.

We write R+ for R ◦ R∗. Hence R∗ = R+ ∪ ε.

Moreover, write Rk for
k︷ ︸︸ ︷

R ◦ R ◦ · · · ◦ R.
Define R0 = ε. We have R∗ = R0 ∪ R1 ∪ · · · ∪ Rn ∪ · · · .

L(R) denotes the language described by the regular
expression R.
Note that ∅ 6= {ε}.Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 24 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) =

{w : w contains a single 1}.

L(Σ∗1Σ∗) =

{w : w has at least one 1}.

L((ΣΣ)∗) =

{w : w is a string of even length }.

(0 ∪ ε)(1 ∪ ε) =

{ε,0,1,01}.

1∗∅ =

∅.

∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) =

{w : w has at least one 1}.

L((ΣΣ)∗) =

{w : w is a string of even length }.

(0 ∪ ε)(1 ∪ ε) =

{ε,0,1,01}.

1∗∅ =

∅.

∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) =

{w : w is a string of even length }.

(0 ∪ ε)(1 ∪ ε) =

{ε,0,1,01}.

1∗∅ =

∅.

∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 ∪ ε)(1 ∪ ε) =

{ε,0,1,01}.

1∗∅ =

∅.

∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 ∪ ε)(1 ∪ ε) = {ε,0,1,01}.
1∗∅ =

∅.

∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 ∪ ε)(1 ∪ ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ =

{ε}.

For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Examples of Regular Expressions

For convenience, we write RS for R ◦ S.
We may also write the regular expression R to denote its
language L(R).
L(0∗10∗) = {w : w contains a single 1}.
L(Σ∗1Σ∗) = {w : w has at least one 1}.
L((ΣΣ)∗) = {w : w is a string of even length }.
(0 ∪ ε)(1 ∪ ε) = {ε,0,1,01}.
1∗∅ = ∅.
∅∗ = {ε}.
For any regular expression R, we have R ∪ ∅ = R and
R ◦ ε = R.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 25 / 39

Regular Expressions and Finite Automata

Lemma
If a language is described by a regular expression, it is regular.

Proof.
We prove by induction on the regular expression R.

R = a for some a ∈ Σ. Consider the NFA Na = ({q1,q2},Σ, δ,q1, {q2})

where δ(r , y) =

{
{q2} r = q1 and y = a
∅ otherwise

R = ε. Consider the NFA Nε = ({q1},Σ, δ,q1, {q1}) where δ(r , y) = ∅ for
any r and y .

R = ∅. Consider the NFA N∅ = ({q1},Σ, δ,q1, ∅) where δ(r , y) = ∅ for
any r and y .

R = R1 ∪ R2, R = R1 ◦ R2, or R = R∗1 . By inductive hypothesis and the
closure properties of finite automata.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 26 / 39

Regular Expressions and Finite Automata

a
a

b
b

ab
εa b

ab ∪ a
ε

a bε

a

ε

(ab ∪ a)∗ ε

a bε

a

ε

ε

ε

ε

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 27 / 39

Regular Expressions and Finite Automata

Lemma
If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 28 / 39

Generalized Nondeterministic Finite Automata
Definition
A generalized nondeterministic finite automaton is a 5-tuple
(Q,Σ,qstart,qaccept) where

Q is the finite set of states;
Σ is the input alphabet;
δ : (Q − {qaccept})× (Q − {qstart})→ R is the transition
function, where R denotes the set of regular expressions;
qstart is the start state; and
qaccept is the accept state.

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 · · ·wk where
wi ∈ Σ∗ and there is a sequence of states r0, r1, . . . , rk such that

r0 = qstart;
rk = qaccept; and
for every i , wi ∈ L(Ri) where Ri = δ(qi−1,qi).

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 29 / 39

Regular Expressions and Finite Automata
Proof of Lemma.
Let M be the DFA for the regular language. Construct an
equivalent GNFA G by adding qstart,qaccept and necessary
ε-transitions.
CONVERT (G):

1 Let k be the number of states of G.
2 If k = 2, then return the regular expression R labeling the

transition from qstart to qaccept.
3 If k > 2, select qrip ∈ Q \ {qstart,qaccept}. Construct

G′ = (Q′,Σ, δ′,qstart,qaccept) where
Q′ = Q \ {qrip};
for any qi ∈ Q′ \ {qaccept} and qj ∈ Q′ \ {qstart}, define
δ′(qi ,qj) = (R1)(R2)∗(R3) ∪ R4 where R1 = δ(qi ,qrip),
R2 = δ(qrip,qrip), R3 = δ(qrip,qj), and R4 = δ(qi ,qj).

4 return CONVERT (G′).
Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 30 / 39

Regular Expressions and Finite Automata

Lemma
For any GNFA G, CONVERT (G) is equivalent to G.

Proof.
We prove by induction on the number k of states of G.

k = 2. Trivial.

Assume the lemma holds for k − 1 states. We first show G′ is
equivalent to G. Suppose G accepts an input w . Let
qstart,q1,q2, . . . ,qaccept be an accepting computation of G. We have qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1−→ qrip · · · qrip

wj−1−→ qrip
wj−→ qj · · · qaccept. Hence

qstart
w1−→ q1 · · · qi−1

wi−→ qi
wi+1···wj−→ qj · · · qaccept is a computation of G′.

Conversely, any string accepted by G′ is also accepted by G since the
transition between qi and qj in G′ describes the strings taking qi to qj in
G. Hence G′ is equivalent to G. By inductive hypothesis, CONVERT
(G′) is equivalent to G′.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 31 / 39

Regular Expressions and Finite Automata

a,b

q1

q2

b

a

(a) DFA M

ε

q1

q2

b

a

a,b

qstart

qaccept

ε

(b) GNFA G

b(a ∪ b)∗

q1 aqstart

qaccept

ε

(c) GNFA

a∗b(a ∪ b)∗

qstart

qaccept

(d) GNFA

Figure: Finite Automaton to Regular ExpressionYu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 32 / 39

Regular Expressions and Finite Automata

Theorem
A language is regular if and only if some regular expression
describes it.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 33 / 39

Pumping Lemma
Lemma
If A is a regular language, then there is a number p such that for
any s ∈ A of length at least p, there is a partition s = xyz with

1 for each i ≥ 0, xy iz ∈ A; |y | > 0; and |xy | ≤ p.

Proof.
Let M = (Q,Σ, δ,q1,F) be a DFA recognizing A and p = |Q|.
Consider any string s = s1s2 · · · sn of length n ≥ p. Let
r1 = q1, . . . , rn+1 be the sequence of states such that
ri+1 = δ(ri , si) for 1 ≤ i ≤ n. Since n + 1 ≥ p + 1 = |Q|+ 1, there
are 1 ≤ j < l ≤ p + 1 such that rj = rl (why?). Choose
x = s1 · · · sj−1, y = sj · · · sl−1, and z = sl · · · sn.
Note that r1

x−→ rj , rj
y−→ rl , and rl

z−→ rn+1 ∈ F . Thus M accepts
xy iz for i ≥ 0. Since j 6= l , |y | > 0. Finally, |xy | ≤ p for
l ≤ p + 1.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 34 / 39

Applications of Pumping Lemma

Example
B = {0n1n : n ≥ 0} is not a regular language.

Proof.
Suppose B is regular. Let p be the pumping length given by the
pumping lemma. Choose s = 0p1p. Then s ∈ B and |s| ≥ p,
there is a partition s = xyz such that xy iz ∈ B for i ≥ 0.

y ∈ 0+ or y ∈ 1+. xz 6∈ B. A contradiction.
y ∈ 0+1+. xyyz 6∈ B. A contradiction.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 35 / 39

Applications of Pumping Lemma

Example
B = {0n1n : n ≥ 0} is not a regular language.

Corollary
C = {w : w has an equal number of 0’s and 1’s} is not a regular
language.

Proof.
Suppose C is regular. Then B = C ∩ 0∗1∗ is regular.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 36 / 39

Applications of Pumping Lemma

Example
F = {ww : w ∈ {0,1}∗} is not a regular language.

Proof.
Suppose F is a regular language and p the pumping length.
Choose s = 0p10p1. By the pumping lemma, there is a partition
s = xyz such that |xy | ≤ p and xy iz ∈ F for i ≥ 0. Since
|xy | ≤ p, y ∈ 0+. But then xz 6∈ F . A contradiction.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 37 / 39

Applications of Pumping Lemma

Example
D = {1n2

: n ≥ 0} is not a regular language.

Proof.
Suppose D is a regular language and p the pumping length.
Choose s = 1p2. By the pumping lemma, there is a partition
s = xyz such that |y | > 0, |xy | ≤ p, and xy iz ∈ D for i ≥ 0.
Consider the strings xyz and xy2z. We have |xyz| = p2 and
|xy2z| = p2 + |y | ≤ p2 + p < p2 + 2p + 1 = (p + 1)2. Since
|y | > 0, we have p2 = |xyz| < |xy2z| < (p + 1)2. Thus xy2z 6∈ D.
A contradiction.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 38 / 39

Applications of Pumping Lemma

Example
E = {0i1j : i > j} is not a regular language.

Proof.
Suppose E is a regular language and p the pumping length.
Choose s = 0p+11p. By the pumping lemma, there is a partition
s = xyz such that |y | > 0, |xy | ≤ p, and xy iz ∈ E for i ≥ 0.
Since |xy | ≤ p, y ∈ 0+. But then xz 6∈ E for |y | > 0. A
contradiction.

Yu-Fang Chen (IM.NTU) Regular Languages Theory of Computing 2018 39 / 39

	Finite Automata
	Nondeterminism
	Regular Expressions
	Nonregular Languages

