Regular Languages (Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management
National Taiwan University

Schematic of Finite Automata

Figure: Schematic of Finite Automata

A finite automaton has a finite set of control states.A finite automaton reads input symbols from left to right.
A finite automaton accepts or rejects an input after reading the input.

Finite Automaton M_{1}

Figure: A Finite Automaton M_{1}

The state diagram of a finite automaton $M_{1} . M_{1}$ has
3 states: $q_{1}, q_{2}, q_{3} ;$a start state: q_{1};

- a accept state: q_{2};

6 transitions: $q_{1} \xrightarrow{0} q_{1}, q_{1} \xrightarrow{1} q_{2}, q_{2} \xrightarrow{1} q_{2}, q_{2} \xrightarrow{0} q_{3}$, $q_{3} \xrightarrow{0} q_{2}$, and $q_{3} \xrightarrow{1} q_{2}$.

Accepted and Rejected String

Consider an input string 1100.M_{1} processes the string from the start state q_{1}.It takes the transition labeled by the current symbol and moves to the next state.At the end of the string, there are two cases:
. If M_{1} is at an accept state, M_{1} outputs accept;
Otherwise, M_{1} outputs reject.

- Strings accepted by $M_{1}: 1,01,11,1100,1101, \ldots$.
- Strings rejected by $M_{1}: 0,00,10,010,1010, \ldots$.

Finite Automaton - Formal Definition

- A finite automaton is a 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$ where

Q Q is a finite set of states;
, Σ is a finite set called alphabet,

- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function;
- $q_{0} \in Q$ is the start state; and
- $F \subseteq Q$ is the set of accept states.
- Accept states are also called final states.

The set of all strings that M accepts is called the language of machine M (written $L(M)$).

- Recall a language is a set of strings.

We also say M recognizes (or accepts) $L(M)$.

M_{1} - Formal Definition

A finite automaton $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$ consists of
, $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$;
. $\Sigma=\{0,1\}$;

- $\delta: Q \times \Sigma \rightarrow Q$ is

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

q_{1} is the start state; and
, $F=\left\{q_{2}\right\}$.
Moreover, we have

$$
\begin{aligned}
L\left(M_{1}\right)=\{w: & w \text { contains at least one } 1 \text { and } \\
& \text { an even number of } 0 \text { 's follow the last } 1\}
\end{aligned}
$$

Finite Automaton M_{2}

Figure: Finite Automaton M_{2}
$M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)$ where δ is

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{2}

What is $L\left(M_{2}\right)$?

Finite Automaton M_{2}

Figure: Finite Automaton M_{2}
$M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)$ where δ is

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{2}

What is $L\left(M_{2}\right)$?
$L\left(M_{2}\right)=\{w: w$ ends in a 1$\}$.

Finite Automaton M_{3}

Figure: Finite Automaton M_{3}
$M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$ where δ is

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{2}

What is $L\left(M_{3}\right)$?

Finite Automaton M_{3}

Figure: Finite Automaton M_{3}
$M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$ where δ is

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{1}	q_{2}

What is $L\left(M_{3}\right)$?
. $L\left(M_{3}\right)=\{w: w$ is the empty string ϵ or ends in a 0$\}$.

Finite Automaton M_{5}

Figure: Finite Automaton M_{5}
$M_{5}=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1,2,\langle R E S E T\rangle\}, \delta, q_{0},\left\{q_{0}\right\}\right)$.

- Strings accepted by M_{5} : $0,00,12,21,012,102,120,021,201,210,111,222, \ldots$.
- M_{5} computes the sum of input symbols modulo 3. It resets upon the input symbol $\langle R E S E T\rangle . M_{5}$ accepts strings who sum is a multiple of 3 .

Computation - Formal Definition

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton and $w=w_{1} w_{2} \cdots w_{n}$ a string where $w_{i} \in \Sigma$ for every $i=1, \ldots, n$.

- We say M accepts w if there is a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ such that

. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0, \ldots, n-1$; and
- $r_{n} \in F$.
- M recognizes language A if $A=\{w: M$ accepts $w\}$.

Definition

A language is called a regular language if some finite automaton recognizes it.

Regular Operations

Definition

Let A and B be languages. We define the following operations:
Union: $A \cup B=\{x: x \in A$ or $x \in B\}$.
Concatenation: $A \circ B=\{x y: x \in A$ and $y \in B\}$.
Star: $A^{*}=\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0\right.$ and every $\left.x_{i} \in A\right\}$.

- Note that $\epsilon \in A^{*}$ for every language A.

Closure Property - Union

Theorem

The class of regular languages is closed under the union operation. That is, $A_{1} \cup A_{2}$ is regular if A_{1} and A_{2} are.

Proof.

Let $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$. Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2}=\left\{\left(r_{1}, r_{2}\right): r_{1} \in Q_{1}, r_{2} \in Q_{2}\right\} ; \\
& \delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right) ; \\
& q_{0}=\left(q_{1}, q_{2}\right) ; \\
& F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)=\left\{\left(r_{1}, r_{2}\right): r_{1} \in F_{1} \text { or } r_{2} \in F_{2}\right\} .
\end{aligned}
$$

Why is $L(M)=A_{1} \cup A_{2}$?

Nondeterminism

- When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.
This is call deterministic computation.
In nondeterministic machines, multiple choices may exist for the next state.
- A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.
A DFA is also an NFA.
- Since NFA allow more general computation, they can be much smaller than DFA.

NFA N_{4}

Figure: NFA N_{4}

- On input string baa, N_{4} has several possible computation:
* $q_{1} \xrightarrow{\mathrm{~b}} q_{2} \xrightarrow{\mathrm{a}} q_{2} \xrightarrow{\mathrm{a}} q_{2}$;
*) $q_{1} \xrightarrow{\text { b }} q_{2} \xrightarrow{a} q_{2} \xrightarrow{a} q_{3}$; or
$q_{1} \xrightarrow{\text { b }} q_{2} \xrightarrow{a} q_{3} \xrightarrow{a} q_{1}$.

Nondeterministic Finite Automaton - Formal Definition

For any set $Q, \mathcal{P}(Q)=\{R: R \subseteq Q\}$ denotes the power set of Q.

- For any alphabet Σ, define Σ_{ϵ} to be $\Sigma \cup\{\epsilon\}$.
- A nondeterministic finite automaton is a 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$ where
, Q is a finite set of states;
Σ is a finite alphabet;
. $\delta: Q \times \Sigma_{\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function;
- $q_{0} \in Q$ is the start state; and
- $F \subseteq Q$ is the accept states.
- Note that the transition function accepts the empty string as an input symbol.

NFA N_{4} - Formal Definition

$N_{4}=\left(Q, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$ is a nondeterministic finite automaton where
$Q=\left\{q_{1}, q_{2}, q_{3}\right\} ;$
Its transition function δ is

	ϵ	a	b
q_{1}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{2}\right\}$
q_{2}	\emptyset	$\left\{q_{2}, q_{3}\right\}$	$\left\{q_{3}\right\}$
q_{3}	\emptyset	$\left\{q_{1}\right\}$	\emptyset

Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA and w a string over Σ. We say N accepts w if w can be rewritten as $w=y_{1} y_{2} \cdots y_{m}$ with $y_{i} \in \Sigma_{\epsilon}$ and there is a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ such that

$$
\begin{aligned}
& r_{0}=q_{0} \\
& r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right) \text { for } i=0, \ldots, m-1 \text {; and } \\
& r_{m} \in F
\end{aligned}
$$Note that finitely many empty strings can be inserted in w.

Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.Strings accepted by N_{4} : a, baa,

Equivalence of NFA's and DFA's

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that $L(M)=L(N)$.

Proof.

Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA. For $R \subseteq Q$, define $E(R)=$ $\{q: q$ can be reached from R along 0 or more ϵ transitions $\}$. Construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
& Q^{\prime}=\mathcal{P}(Q) ; \\
& \delta^{\prime}(R, a)=\{q \in Q: q \in E(\delta(r, a)) \text { for some } r \in R\} \\
& q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right) ; \\
& F^{\prime}=\left\{R \in Q^{\prime}: R \cap F \neq \emptyset\right\}
\end{aligned}
$$

Why is $L(M)=L(N)$?

A DFA Equivalent to N_{4}

Figure: A DFA Equivalent to N_{4}

Closure Properties - Revisited

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$. Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
$Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2} ; F=F_{1} \cup F_{2}$; and
$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(a, a) & q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & q=q_{0} \text { and } a=\epsilon \\ \emptyset & q=q_{0} \text { and } a \neq \epsilon\end{cases}$
Why is $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$?

Closure Properties - Revisited

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$. Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ where
$Q=Q_{1} \cup Q_{2}$; and
$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in F_{1} \text { and } a=\epsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}$
Why is $L(N)=L\left(N_{1}\right) \circ L\left(N_{2}\right)$?

Closure Properties - Revisited

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}. Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
$Q=\left\{q_{0}\right\} \cup Q_{1} ; F=\left\{q_{0}\right\} \cup F_{1}$; and
$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\epsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\epsilon \\ \emptyset & q=q_{0} \text { and } a \neq \epsilon\end{cases}$

Closure Properties - Revisited

Theorem

The class of regular languages is closed under complementation.

Proof.

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA recognizing A. Consider $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$. We have $w \in L(M)$ if and only if $w \notin L(\bar{M})$. That is, $L(\bar{M})=\bar{A}$ as required.

Regular Expressions

Definition

R is a regular expression if R is
a for some $a \in \Sigma$;
ϵ;
\emptyset;
($\left.R_{1} \cup R_{2}\right)$ where R_{i} 's are regular expressions;
($R_{1} \circ R_{2}$) where R_{i} 's are regular expressions; or
(R_{1}^{*}) where R_{1} is a regular expression.
We write R^{+}for $R \circ R^{*}$. Hence $R^{*}=R^{+} \cup \epsilon$.

- Moreover, write R^{k} for $\overbrace{R \circ R \circ \cdots \circ R}$.
, Define $R^{0}=\epsilon$. We have $R^{*}=R^{0} \cup R^{1} \cup \cdots \cup R^{n} \cup \cdots$.
- $L(R)$ denotes the language described by the regular expression R.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
- $L\left(0^{*} 10^{*}\right)=$
- $L\left(\Sigma^{*} 1 \Sigma^{*}\right)=$
- $L\left((\Sigma \Sigma)^{*}\right)=$
- $(0 \cup \epsilon)(1 \cup \epsilon)=$
- $1^{*} \emptyset=$
- $\emptyset^{*}=$
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
- $L\left(\Sigma^{*} 1 \Sigma^{*}\right)=$
- $L\left((\Sigma \Sigma)^{*}\right)=$
- $(0 \cup \epsilon)(1 \cup \epsilon)=$
- $1^{*} \emptyset=$
- $\emptyset^{*}=$

For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$.
- $L\left((\Sigma \Sigma)^{*}\right)=$
- $(0 \cup \epsilon)(1 \cup \epsilon)=$
- $1^{*} \emptyset=$
- $\emptyset^{*}=$
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$.
$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon)=$
- $1^{*} \emptyset=$
- $\emptyset^{*}=$
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$.
$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$.
- $1^{*} \emptyset=$
- $\emptyset^{*}=$
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$.
$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$.
- $(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$.
$1^{*} \emptyset=\emptyset$.
- $\emptyset^{*}=$
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Examples of Regular Expressions

For convenience, we write $R S$ for $R \circ S$.

- We may also write the regular expression R to denote its language $L(R)$.
$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$.
$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$.
$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$.
$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$.
- $1^{*} \emptyset=\emptyset$.
- $\emptyset^{*}=\{\epsilon\}$.
- For any regular expression R, we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$.

Regular Expressions and Finite Automata

Lemma

If a language is described by a regular expression, it is regular.

Proof.

We prove by induction on the regular expression R.
$R=a$ for some $a \in \Sigma$. Consider the NFA $N_{a}=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right)$ where $\delta(r, y)= \begin{cases}\left\{q_{2}\right\} & r=q_{1} \text { and } y=a \\ \emptyset & \text { otherwise }\end{cases}$
$R=\epsilon$. Consider the NFA $N_{\epsilon}=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$ where $\delta(r, y)=\emptyset$ for any r and y.
$R=\emptyset$. Consider the NFA $N_{\emptyset}=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1}, \emptyset\right)$ where $\delta(r, y)=\emptyset$ for any r and y.
$R=R_{1} \cup R_{2}, R=R_{1} \circ R_{2}$, or $R=R_{1}^{*}$. By inductive hypothesis and the closure properties of finite automata.

Regular Expressions and Finite Automata

Regular Expressions and Finite Automata

Lemma

If a language is regular, it is described by a regular expression.
For the proof, we introduce a generalization of finite automata.

Generalized Nondeterministic Finite Automata

Definition

A generalized nondeterministic finite automaton is a 5 -tuple ($Q, \Sigma, q_{\text {start }}, q_{\text {accept }}$) where
Q is the finite set of states;
Σ is the input alphabet;
$\delta:\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right) \rightarrow \mathcal{R}$ is the transition function, where \mathcal{R} denotes the set of regular expressions;
$q_{\text {start }}$ is the start state; and

- accept is the accept state.

A GNFA accepts a string $w \in \Sigma^{*}$ if $w=w_{1} w_{2} \cdots w_{k}$ where $w_{i} \in \Sigma^{*}$ and there is a sequence of states $r_{0}, r_{1}, \ldots, r_{k}$ such that
$r_{0}=q_{\text {start }} ;$
$r_{k}=q_{\text {accept }} ;$ and
for every $i, w_{i} \in L\left(R_{i}\right)$ where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$.

Regular Expressions and Finite Automata

Proof of Lemma.

Let M be the DFA for the regular language. Construct an equivalent GNFA G by adding $q_{\text {start }}, q_{\text {accept }}$ and necessary ϵ-transitions.
CONVERT (G):
(1) Let k be the number of states of G.
(2) If $k=2$, then return the regular expression R labeling the transition from $q_{\text {start }}$ to $q_{\text {accept }}$.
(3) If $k>2$, select $q_{\text {rip }} \in Q \backslash\left\{q_{\text {start }}, q_{\text {accept }}\right\}$. Construct $G^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}\right)$ where

- $Q^{\prime}=Q \backslash\left\{q_{\text {rip }}\right\}$;
- for any $q_{i} \in Q^{\prime} \backslash\left\{q_{\text {accept }}\right\}$ and $q_{j} \in Q^{\prime} \backslash\left\{q_{\text {start }}\right\}$, define $\delta^{\prime}\left(q_{i}, q_{j}\right)=\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{3}\right) \cup R_{4}$ where $R_{1}=\delta\left(q_{i}, q_{\text {rip }}\right)$, $R_{2}=\delta\left(q_{\text {rip }}, q_{\text {rip }}\right), R_{3}=\delta\left(q_{\text {rip }}, q_{j}\right)$, and $R_{4}=\delta\left(q_{i}, q_{j}\right)$.
(9) return CONVERT $\left(G^{\prime}\right)$.

Regular Expressions and Finite Automata

Lemma

For any GNFA G, CONVERT (G) is equivalent to G.

Proof.

We prove by induction on the number k of states of G.$k=2$. Trivial.
Assume the lemma holds for $k-1$ states. We first show G^{\prime} is equivalent to G. Suppose G accepts an input w. Let
$q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ be an accepting computation of G. We have $q_{\text {start }}$
$\xrightarrow{w_{1}} q_{1} \cdots q_{i-1} \xrightarrow{w_{i}} q_{i} \xrightarrow{w_{i+1}} q_{\text {rip }} \cdots q_{\text {rip }} \xrightarrow{w_{j-1}} q_{\text {rip }} \xrightarrow{w_{j}} q_{j} \cdots q_{\text {accept }}$. Hence
$q_{\text {start }} \xrightarrow{w_{1}} q_{1} \cdots q_{i-1} \xrightarrow{w_{i}} q_{i} \xrightarrow{w_{i+1} \cdots w_{j}} q_{j} \cdots q_{\text {accept }}$ is a computation of G^{\prime}. Conversely, any string accepted by G^{\prime} is also accepted by G since the transition between q_{i} and q_{j} in G^{\prime} describes the strings taking q_{i} to q_{j} in G. Hence G^{\prime} is equivalent to G. By inductive hypothesis, CONVERT (G^{\prime}) is equivalent to G^{\prime}.

Regular Expressions and Finite Automata

(a) DFA M
(b) GNFA G

(d) GNFA

Regular Expressions and Finite Automata

Theorem
A language is regular if and only if some regular expression describes it.

Pumping Lemma

Lemma

If A is a regular language, then there is a number p such that for any $s \in A$ of length at least p, there is a partition $s=x y z$ with
(1) for each $i \geq 0, x y^{i} z \in A ;|y|>0$; and $|x y| \leq p$.

Proof.

Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing A and $p=|Q|$. Consider any string $s=s_{1} s_{2} \cdots s_{n}$ of length $n \geq p$. Let $r_{1}=q_{1}, \ldots, r_{n+1}$ be the sequence of states such that $r_{i+1}=\delta\left(r_{i}, s_{i}\right)$ for $1 \leq i \leq n$. Since $n+1 \geq p+1=|Q|+1$, there are $1 \leq j<I \leq p+1$ such that $r_{j}=r_{l}$ (why?). Choose $x=s_{1} \cdots s_{j-1}, y=s_{j} \cdots s_{l-1}$, and $z=s_{l} \cdots s_{n}$.
Note that $r_{1} \xrightarrow{x} r_{j}, r_{j} \xrightarrow{y} r_{l}$, and $r_{l} \xrightarrow{z} r_{n+1} \in F$. Thus M accepts $x y^{i} z$ for $i \geq 0$. Since $j \neq I,|y|>0$. Finally, $|x y| \leq p$ for $l \leq p+1$.

Applications of Pumping Lemma

Example

$B=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not a regular language.

Proof.

Suppose B is regular. Let p be the pumping length given by the pumping lemma. Choose $s=0^{p} 1^{p}$. Then $s \in B$ and $|s| \geq p$, there is a partition $s=x y z$ such that $x y^{i} z \in B$ for $i \geq 0$.
$y \in 0^{+}$or $y \in 1^{+} . x z \notin B$. A contradiction.
$y \in 0^{+} 1^{+} . x y y z \notin B$. A contradiction.

Applications of Pumping Lemma

Example
 $B=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not a regular language.

Corollary

$C=\{w: w$ has an equal number of 0 's and 1 's $\}$ is not a regular language.

Proof.

Suppose C is regular. Then $B=C \cap 0^{*} 1^{*}$ is regular.

Applications of Pumping Lemma

Example

$F=\left\{w w: w \in\{0,1\}^{*}\right\}$ is not a regular language.

Proof.

Suppose F is a regular language and p the pumping length. Choose $s=0^{p} 10^{p} 1$. By the pumping lemma, there is a partition $s=x y z$ such that $|x y| \leq p$ and $x y^{i} z \in F$ for $i \geq 0$. Since $|x y| \leq p, y \in 0^{+}$. But then $x z \notin F$. A contradiction.

Applications of Pumping Lemma

Example

$D=\left\{1^{n^{2}}: n \geq 0\right\}$ is not a regular language.

Proof.

Suppose D is a regular language and p the pumping length. Choose $\boldsymbol{s}=1^{p^{2}}$. By the pumping lemma, there is a partition $s=x y z$ such that $|y|>0,|x y| \leq p$, and $x y^{i} z \in D$ for $i \geq 0$. Consider the strings $x y z$ and $x y^{2} z$. We have $|x y z|=p^{2}$ and $\left|x y^{2} z\right|=p^{2}+|y| \leq p^{2}+p<p^{2}+2 p+1=(p+1)^{2}$. Since $|y|>0$, we have $p^{2}=|x y z|<\left|x y^{2} z\right|<(p+1)^{2}$. Thus $x y^{2} z \notin D$. A contradiction.

Applications of Pumping Lemma

Example

$E=\left\{0^{i} 1^{j}: i>j\right\}$ is not a regular language.

Proof.

Suppose E is a regular language and p the pumping length. Choose $s=0^{p+1} 1^{p}$. By the pumping lemma, there is a partition $s=x y z$ such that $|y|>0,|x y| \leq p$, and $x y^{i} z \in E$ for $i \geq 0$. Since $|x y| \leq p, y \in 0^{+}$. But then $x z \notin E$ for $|y|>0$. A contradiction.

