

Regular Languages

(Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management National Taiwan University

Schematic of Finite Automata

Figure: Schematic of Finite Automata

- A finite automaton has a finite set of control states.
- A finite automaton reads input symbols from left to right.
- A finite automaton accepts or rejects an input after reading the input.

Figure: A Finite Automaton M_1

The *state diagram* of a finite automaton M_1 . M_1 has

- 3 states: q₁, q₂, q₃;
- 🚱 a start state: q1;
- 📀 a accept state: q2;
- 6 transitions: $q_1 \stackrel{\circ}{\longrightarrow} q_1$, $q_1 \stackrel{1}{\longrightarrow} q_2$, $q_2 \stackrel{1}{\longrightarrow} q_2$, $q_2 \stackrel{\circ}{\longrightarrow} q_3$, $q_3 \stackrel{\circ}{\longrightarrow} q_2$, and $q_3 \stackrel{1}{\longrightarrow} q_2$.

Accepted and Rejected String

- 😚 Consider an input string 1100.
- $ightharpoonup M_1$ processes the string from the start state q_1 .
- It takes the transition labeled by the current symbol and moves to the next state.
- At the end of the string, there are two cases:
 - * If M_1 is at an accept state, M_1 outputs accept;
 - Otherwise, M₁ outputs reject.
- Strings accepted by M₁: 1,01,11,1100,1101,....
- Strings rejected by *M*₁: 0,00,10,010,1010,....

Finite Automaton – Formal Definition

- \blacksquare A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - Q is a finite set of states;
 - $\gg \Sigma$ is a finite set called *alphabet*;

 - $ilde{*} q_0 \in Q$ is the *start state*; and
 - $ilde{*} \ F \subseteq Q$ is the set of *accept states*.
- Accept states are also called final states.
- The set of all strings that M accepts is called the *language* of machine M (written L(M)).
 - Recall a language is a set of strings.
- \bigcirc We also say M recognizes (or accepts) L(M).

M_1 – Formal Definition

- **③** A finite automaton $M_1 = (Q, \Sigma, \delta, q_1, F)$ consists of
 - $Q = \{q_1, q_2, q_3\};$
 - $\Sigma = \{0, 1\};$
 - \circledast $\delta: Q \times \Sigma \rightarrow Q$ is

- 🌞 q_1 is the start state; and
- $F = \{q_2\}.$
- Moreover, we have

 $L(M_1) = \{w : w \text{ contains at least one } 1 \text{ and } an \text{ even number of } 0 \text{ 's follow the last } 1\}$

Figure: Finite Automaton M_2

• $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where δ is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

• What is $L(M_2)$?

Figure: Finite Automaton M_2

•
$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$
 where δ is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

- \bullet What is $L(M_2)$?
 - $\# L(M_2) = \{ w : w \text{ ends in a } 1 \}.$

Figure: Finite Automaton M_3

• $M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$ where δ is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

• What is $L(M_3)$?

Figure: Finite Automaton M_3

•
$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$
 where δ is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

- \bigcirc What is $L(M_3)$?
 - $\# L(M_3) = \{ w : w \text{ is the empty string } \epsilon \text{ or ends in a } 0 \}.$

Figure: Finite Automaton *M*₅

- $M_5 = (\{q_0, q_1, q_2\}, \{0, 1, 2, \langle RESET \rangle\}, \delta, q_0, \{q_0\}).$
- Strings accepted by M₅:
 0,00,12,21,012,102,120,021,201,210,111,222,...
- M_5 computes the sum of input symbols modulo 3. It resets upon the input symbol $\langle RESET \rangle$. M_5 accepts strings who sum is a multiple of 3.

Computation – Formal Definition

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = w_1 w_2 \cdots w_n$ a string where $w_i \in \Sigma$ for every $i = 1, \dots, n$.
- We say M accepts w if there is a sequence of states r_0, r_1, \ldots, r_n such that
 - $\stackrel{*}{=} r_0 = q_0;$
 - $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1; and
 - price $r_n \in F$.
- \bigcirc M recognizes language A if $A = \{w : M \text{ accepts } w\}$.

Definition

A language is called a *regular language* if some finite automaton recognizes it.

Regular Operations

Definition

Let A and B be languages. We define the following operations:

- **◊** *Union*: $A \cup B = \{x : x \in A \text{ or } x \in B\}$.
- **?** Concatenation: $A \circ B = \{xy : x \in A \text{ and } y \in B\}.$
- **◊** Star. $A^* = \{x_1x_2 \cdots x_k : k \ge 0 \text{ and every } x_i \in A\}.$
- Note that $\epsilon \in A^*$ for every language A.

Closure Property – Union

Theorem

The class of regular languages is closed under the union operation. That is, $A_1 \cup A_2$ is regular if A_1 and A_2 are.

Proof.

Let $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $M = (Q, \Sigma, \delta, q_0, F)$ where

- $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));$
- $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2\}.$
- ightharpoonup Why is $L(M) = A_1 \cup A_2$?

Nondeterminism

- When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.
- This is call deterministic computation.
- In nondeterministic machines, multiple choices may exist for the next state.
- A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.
- A DFA is also an NFA.
- Since NFA allow more general computation, they can be much smaller than DFA.

NFA N₄

Figure: NFA N₄

- On input string baa, N_4 has several possible computation:
 - $\stackrel{\text{!`}}{=} q_1 \stackrel{\text{!`}}{\longrightarrow} q_2 \stackrel{\text{a}}{\longrightarrow} q_2 \stackrel{\text{a}}{\longrightarrow} q_2;$
 - $ilde{*} \hspace{0.1cm} q_1 \stackrel{ ext{ iny b}}{\longrightarrow} q_2 \stackrel{ ext{ iny a}}{\longrightarrow} q_2 \stackrel{ ext{ iny a}}{\longrightarrow} q_3;$ or
 - $\stackrel{\text{$\flat$}}{\bullet} q_1 \stackrel{\text{b}}{\longrightarrow} q_2 \stackrel{\text{a}}{\longrightarrow} q_3 \stackrel{\text{a}}{\longrightarrow} q_1.$

Nondeterministic Finite Automaton – Formal Definition

- For any set Q, $\mathcal{P}(Q) = \{R : R \subseteq Q\}$ denotes the *power set* of Q.
- **•** For any alphabet Σ , define Σ_{ϵ} to be $\Sigma \cup \{\epsilon\}$.
- A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - Q is a finite set of states;
 - 🌞 Σ is a finite alphabet;
 - $ilde{*}$ $\delta: \mathbf{Q} \times \Sigma_{\epsilon} \to \mathcal{P}(\mathbf{Q})$ is the transition function;
 - $\overset{\clubsuit}{}$ $q_0 \in Q$ is the start state; and
- Note that the transition function accepts the empty string as an input symbol.

NFA N_4 – Formal Definition

- $N_4 = (Q, \Sigma, \delta, q_1, \{q_1\})$ is a nondeterministic finite automaton where
 - $Q = \{q_1, q_2, q_3\};$
 - * Its transition function δ is

	ϵ	а	b
q_1	{ <i>q</i> ₃ }	Ø	{ q ₂ }
q_2	Ø	$\{q_2, q_3\}$	$\{q_3\}$
q_3	Ø	$\{q_1\}$	Ø

Nondeterministic Computation – Formal Definition

- ♦ Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ. We say N accepts w if w can be rewritten as $w = y_1 y_2 \cdots y_m$ with $y_i \in \Sigma_\epsilon$ and there is a sequence of states r_0, r_1, \ldots, r_m such that
 - $* r_0 = q_0;$
 - * $r_{i+1} \in \delta(r_i, y_{i+1})$ for i = 0, ..., m-1; and
- \odot Note that finitely many empty strings can be inserted in w.
- Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.
- Strings accepted by N₄: a, baa,

Equivalence of NFA's and DFA's

Theorem

Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that L(M) = L(N).

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For $R \subseteq Q$, define E(R) = $\{q:q \text{ can be reached from } R \text{ along 0 or more } \epsilon \text{ transitions } \}.$ Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

- $\bigcirc Q' = \mathcal{P}(Q);$
- $\bigcirc q_0' = E(\{q_0\});$
- **③** $F' = \{R \in Q' : R \cap F \neq \emptyset\}.$

A DFA Equivalent to N_4

19/39

Theorem

The class of regular languages is closed under the union operation.

Proof.

Let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

•
$$Q = \{q_0\} \cup Q_1 \cup Q_2; F = F_1 \cup F_2; \text{ and }$$

$$\delta \delta(q,a) = \left\{ egin{array}{ll} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = \epsilon \ \emptyset & q = q_0 ext{ and } a
eq \epsilon \end{array}
ight.$$

• Why is $L(N) = L(N_1) \cup L(N_2)$?

Theorem

The class of regular languages is closed under the concatenation operation.

Proof.

Let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ where

$$\bigcirc Q = Q_1 \cup Q_2$$
; and

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q,a) & q \in Q_2 \end{array} \right.$$

 \P Why is $L(N) = L(N_1) \circ L(N_2)$?

Theorem

The class of regular languages is closed under the star operation.

Proof.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

ightharpoonup Why is $L(N) = [L(N_1)]^*$?

Theorem

The class of regular languages is closed under complementation.

Proof.

Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA recognizing A. Consider $\overline{M}=(Q,\Sigma,\delta,q_0,Q\setminus F)$. We have $w\in L(M)$ if and only if $w\not\in L(\overline{M})$. That is, $L(\overline{M})=\overline{A}$ as required.

Regular Expressions

Definition

R is a regular expression if R is

- a for some $a \in \Sigma$;
- $\Theta \epsilon$;
- ∅;
- $igoplus (R_1 \circ R_2)$ where R_i 's are regular expressions; or
- (R_1^*) where R_1 is a regular expression.
- We write R^+ for $R \circ R^*$. Hence $R^* = R^+ \cup \epsilon$.
- $igoplus Moreover, write <math>R^k$ for $\overbrace{R \circ R \circ \cdots \circ R}$.
 - $ilde{*}$ Define $R^0=\epsilon$. We have $R^*=R^0\cup R^1\cup\cdots\cup R^n\cup\cdots$
- C(R) denotes the language described by the regular expression R.

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $\bigcirc L(0*10*) =$

- \bigcirc $(0 \cup \epsilon)(1 \cup \epsilon) =$
- $1*\emptyset =$
- ∅* =
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L((\Sigma\Sigma)^*) =$
- \bigcirc $(0 \cup \epsilon)(1 \cup \epsilon) =$
- $1*\emptyset =$
- ∅* =
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- \bigcirc For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) =$
- \bigcirc (0 \cup ϵ)(1 \cup ϵ) =
- $1*\emptyset =$
- **③** ∅* =
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- \bigcirc (0 \cup ϵ)(1 \cup ϵ) =
- $1*\emptyset =$
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- \bigcirc For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = {\epsilon, 0, 1, 01}.$
- $1*\emptyset =$
- $\bigcirc \emptyset^* =$
- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- \bigcirc For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = {\epsilon, 0, 1, 01}.$

- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression R to denote its language L(R).
- $L(0*10*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^*1\Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $\ igoplus \ \mathcal{L}((\Sigma\Sigma)^*) = \{ w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = {\epsilon, 0, 1, 01}.$

- For any regular expression R, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

Lemma

If a language is described by a regular expression, it is regular.

Proof.

We prove by induction on the regular expression R.

- R = a for some $a \in \Sigma$. Consider the NFA $N_a = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ where $\delta(r, y) = \begin{cases} \{q_2\} & r = q_1 \text{ and } y = a \\ \emptyset & \text{otherwise} \end{cases}$
- $R = \epsilon$. Consider the NFA $N_{\epsilon} = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where $\delta(r, y) = \emptyset$ for any r and y.
- $R = \emptyset$. Consider the NFA $N_{\emptyset} = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where $\delta(r, y) = \emptyset$ for any r and y.
- $R = R_1 \cup R_2$, $R = R_1 \circ R_2$, or $R = R_1^*$. By inductive hypothesis and the closure properties of finite automata.

а	a	
b	b	
ab	a e b	
	$\begin{array}{c c} & & \\ & & \\ \hline \end{array}$	
ab∪a	e a a	
(ab∪a)*	a a b	

Lemma

If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

Generalized Nondeterministic Finite Automata

Definition

A generalized nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, q_{\text{start}}, q_{\text{accept}})$ where

- Q is the finite set of states;
- \bigcirc Σ is the input alphabet;
- $\delta: (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \to \mathcal{R}$ is the transition function, where \mathcal{R} denotes the set of regular expressions;
- \bigcirc q_{start} is the start state; and
- $ightharpoonup q_{\text{accept}}$ is the accept state.

A GNFA *accepts* a string $w \in \Sigma^*$ if $w = w_1 w_2 \cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \dots, r_k such that

- $r_0 = q_{\text{start}};$
- $igcepsilon r_k = q_{
 m accept};$ and
- lacktriangledown for every $i,\ w_i\in L(R_i)$ where $R_i=\delta(q_{i-1},q_i)$

Proof of Lemma.

Let M be the DFA for the regular language. Construct an equivalent GNFA G by adding q_{start} , q_{accept} and necessary ϵ -transitions.

CONVERT (G):

- Let *k* be the number of states of *G*.
- If k = 2, then return the regular expression R labeling the transition from q_{start} to q_{accept} .
- If k > 2, select $q_{\mathsf{rip}} \in Q \setminus \{q_{\mathsf{start}}, q_{\mathsf{accept}}\}$. Construct $G' = (Q', \Sigma, \delta', q_{\mathsf{start}}, q_{\mathsf{accept}})$ where

 - for any $q_i \in Q' \setminus \{q_{\mathsf{accept}}\}$ and $q_j \in Q' \setminus \{q_{\mathsf{start}}\}$, define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup R_4$ where $R_1 = \delta(q_i, q_{\mathsf{rip}})$, $R_2 = \delta(q_{\mathsf{rip}}, q_{\mathsf{rip}})$, $R_3 = \delta(q_{\mathsf{rip}}, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- return CONVERT (G').

Lemma

For any GNFA G, CONVERT (G) is equivalent to G.

Proof.

We prove by induction on the number k of states of G.

- Assume the lemma holds for k-1 states. We first show G' is equivalent to G. Suppose G accepts an input w. Let $q_{\text{start}}, q_1, q_2, \ldots, q_{\text{accept}}$ be an accepting computation of G. We have $q_{\text{start}} \stackrel{w_1}{\longrightarrow} q_1 \cdots q_{i-1} \stackrel{w_j}{\longrightarrow} q_i \stackrel{w_{i+1}}{\longrightarrow} q_{\text{rip}} \stackrel{w_j}{\longrightarrow} q_i \stackrel{w_j}{\longrightarrow} q_j \cdots q_{\text{accept}}$. Hence $q_{\text{start}} \stackrel{w_1}{\longrightarrow} q_1 \cdots q_{i-1} \stackrel{w_j}{\longrightarrow} q_i \stackrel{w_{i+1} \cdots w_j}{\longrightarrow} q_j \cdots q_{\text{accept}}$ is a computation of G'. Conversely, any string accepted by G' is also accepted by G since the transition between q_i and q_j in G' describes the strings taking q_i to q_j in G. Hence G' is equivalent to G. By inductive hypothesis, CONVERT (G') is equivalent to G'.

Theorem

A language is regular if and only if some regular expression describes it.

Pumping Lemma

Lemma

If A is a regular language, then there is a number p such that for any $s \in A$ of length at least p, there is a partition s = xyz with

• for each $i \ge 0$, $xy^iz \in A$; |y| > 0; and $|xy| \le p$.

Proof.

Let $M=(Q,\Sigma,\delta,q_1,F)$ be a DFA recognizing A and p=|Q|. Consider any string $s=s_1s_2\cdots s_n$ of length $n\geq p$. Let $r_1=q_1,\ldots,r_{n+1}$ be the sequence of states such that $r_{i+1}=\delta(r_i,s_i)$ for $1\leq i\leq n$. Since $n+1\geq p+1=|Q|+1$, there are $1\leq j< l\leq p+1$ such that $r_j=r_l$ (why?). Choose $x=s_1\cdots s_{j-1},\ y=s_j\cdots s_{l-1},\ \text{and}\ z=s_l\cdots s_n.$ Note that $r_1\stackrel{x}{\longrightarrow} r_j,\ r_j\stackrel{y}{\longrightarrow} r_l,\ \text{and}\ r_l\stackrel{z}{\longrightarrow} r_{n+1}\in F.$ Thus M accepts xy^iz for $i\geq 0$. Since $j\neq l,\ |y|>0$. Finally, $|xy|\leq p$ for l< p+1.

Example

 $B = \{0^n 1^n : n \ge 0\}$ is not a regular language.

Proof.

Suppose *B* is regular. Let *p* be the pumping length given by the pumping lemma. Choose $s = 0^p 1^p$. Then $s \in B$ and $|s| \ge p$, there is a partition s = xyz such that $xy^iz \in B$ for $i \ge 0$.

- $y \in 0^+$ or $y \in 1^+$. $xz \notin B$. A contradiction.
- $y \in 0^+1^+$. $xyyz \notin B$. A contradiction.

Example

 $B = \{0^n 1^n : n \ge 0\}$ is not a regular language.

Corollary

 $C = \{w : w \text{ has an equal number of } 0 \text{ 's and } 1 \text{ 's} \}$ is not a regular language.

Proof.

Suppose *C* is regular. Then $B = C \cap 0^*1^*$ is regular.

Example

 $F = \{ww : w \in \{0, 1\}^*\}$ is not a regular language.

Proof.

Suppose F is a regular language and p the pumping length. Choose $s = 0^p 10^p 1$. By the pumping lemma, there is a partition s = xyz such that $|xy| \le p$ and $xy^iz \in F$ for $i \ge 0$. Since $|xy| \le p$, $y \in 0^+$. But then $xz \notin F$. A contradiction.

Example

 $D = \{1^{n^2} : n \ge 0\}$ is not a regular language.

Proof.

Suppose D is a regular language and p the pumping length. Choose $s=1^{p^2}$. By the pumping lemma, there is a partition s=xyz such that |y|>0, $|xy|\leq p$, and $xy^iz\in D$ for $i\geq 0$. Consider the strings xyz and xy^2z . We have $|xyz|=p^2$ and $|xy^2z|=p^2+|y|\leq p^2+p< p^2+2p+1=(p+1)^2$. Since |y|>0, we have $p^2=|xyz|<|xy^2z|<(p+1)^2$. Thus $xy^2z\not\in D$. A contradiction.

Example

 $E = \{0^i 1^j : i > j\}$ is not a regular language.

Proof.

Suppose E is a regular language and p the pumping length. Choose $s = 0^{p+1}1^p$. By the pumping lemma, there is a partition s = xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in E$ for $i \ge 0$. Since $|xy| \le p$, $y \in 0^+$. But then $xz \notin E$ for |y| > 0. A contradiction.