

Theory of Computing

Introduction and Preliminaries (Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management National Taiwan University

Overview

Yu-Fang Chen (IM.NTU)

Introduction and Preliminaries

Theory of Computing 2019 2 / 38

2

< □ > < □ > < □ > < □ > < □ >

What It Is

😚 The central question:

What are the fundamental capabilities and limitations of computers?

😚 Three main areas:

- Automata Theory
- 🌻 Computability Theory
- 🌻 Complexity Theory

Complexity Theory

- Some problems are easy and some hard.
 For example, sorting is easy and scheduling is hard.
- The central question of complexity theory: What makes some problems computationally hard and others easy?
- We don't have the answer to it.
- However, researchers have found a scheme for classifying problems according to their computational difficulty.
- One practical application: cryptography/security.

Computability Theory

- Alan Turing, among other mathematicians, discovered in the 1930s that certain basic problems cannot be solved by computers.
- One example is the problem of determining whether a mathematical statement is true or false.
- Theoretical models of computers developed at that time eventually lead to the construction of actual computers.
- The theories of computability and complexity are closely related.
- Complexity theory seeks to classify problems as easy ones and hard ones, while in computability theory the classification is by whether the problem is solvable or not.

4 1 1 4 1 1 1

Unsolvable Problem

Example

Write a program T(P) which accepts program text P as input and returns 1 if P will terminate, 0 if not.

Solution.

It cannot be done. Suppose there is such a program T. Let us consider the following program M:

- if T(M) = 1 then
- 2 while true do od
- **3** else $\{T(M) = 0\}$

exit

What is T(M)? Suppose T(M) = 1, M terminates. Therefore T(M) = 0, or it would end in an infinite loop. On the other hand, suppose T(M) = 0, M does not terminate. Hence T(M) = 1 because this is the only case where M does not terminate. Both cases are contradiction. T does not exist.

- The theories of computability and complexity require a precise, formal definition of a computer.
- Automata theory deals with the definitions and properties of mathematical models of computation.
- 😚 Two basic and practically useful models:
 - *Finite-state*, or simply *finite*, *automaton*
 - Context-free grammar (pushdown automaton)

Mathematical Notions and Terminology

Sets

- A set is a group of (possibly infinite) objects; its objects are called *elements* or *members*.
- So The set without any element is called the *empty* set (written \emptyset).
- 😚 Let A, B be sets.
 - \circledast $A \cup B$ denotes the *union* of A and B.
 - \circledast $A \cap B$ denotes the *intersection* of A and B.
 - A denotes the *complement* of A (with respect to some *universe* U).
 - \circledast $A \subseteq B$ denotes that A is a *subset* of B.
 - $A \subsetneq B$ denotes that A is a *proper subset* of B.
- The power set of a set A (written 2^A) is the set consisting of all subsets of A.
- 📀 If the number of occurrences matters, we use *multiset* instead.

FIGURE 0.1 Venn diagram for the set of English words starting with "t"

Source: [Sipser 2006]

FIGURE 0.2 Venn diagram for the set of English words ending with "z"

Source: [Sipser 2006]

FIGURE 0.3 Overlapping circles indicate common elements

Source: [Sipser 2006]

э

FIGURE 0.4 Diagrams for (a) $A \cup B$ and (b) $A \cap B$

Source: [Sipser 2006]

э

< 47 ▶

- "The Serbian barber only shaves those who do not shave themselves."
- 📀 Consider the following set

$$A = \{x : x \notin A\}.$$

 \bigcirc Is $A \in A$?

Sequences and Tuples

- A *sequence* is a (possibly infinite) list of ordered objects.
- A finite sequence of k elements is also called k-tuple; a 2-tuple is also called a pair.
- The Cartesian product of sets A and B (written A × B) is defined by

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$$

 $\ref{eq: Second States}$ We can take Cartesian products of k sets A_1, A_2, \ldots, A_k

$$A_1 \times A_2 \times \cdots \times A_k = \{(a_1, a_2, \dots, a_k) : a_i \in A_i \text{ for every } 1 \le i \le k\}$$

😚 Define

$$A^k = \overbrace{A \times A \times \cdots \times A}^k.$$

15/38

Functions

- 😚 A *function* sets up an *input-output* relationship, where the same input always produces the same output.
- If f is a function whose output is b when the input is a, we write f(a) = b.
- A function is also called a *mapping*; if f(a) = b, we say that f maps a to b.

Functions (cont.)

- A function $f : D \to R$ maps an element in the domain D to an element in the range R.
- igstarrow Write f(a)=b if f maps $a\in D$ to $b\in R$.
- When $f : A_1 \times A_2 \times \cdots \times A_k \to B$, we say f is a *k*-ary function and k is the arity of f.
 - When k = 1, f is a unary function.
 - When k = 2, f is a binary function.

- A predicate, or property, is a function whose range is {TRUE,FALSE}.
- A predicate whose domain is a set of k-tuples A × ... × A is called a (k-ary) relation on A.
- A 2-ary relation is also called a binary relation.

Equivalence Relations

- An equivalence relation is a special type of binary relation that captures the notion of two objects being equal in some sense.
- A binary relation R on A is an equivalence relation if
 - *R* is *reflexive* (for every x in A, xRx),
 - R is symmetric (for every x and y in A, xRy if and only if yRx), and
 - R is transitive (for every x, y, and z in A, xRy and yRz implies xRz).

Graphs

- An undirected graph (or a graph) consists of a set of nodes (or vertices) and a set of edges.
- The number of edges attached to a node is the *degree* of the node.
- A graph G is a subgraph of a graph H if the nodes of G are a subset of nodes of H, and the edges of G are those of H on the corresponding nodes.
- A *path* is a sequence of nodes connected by edges.
- A *simple path* is a path without repetitive nodes.
- If a graph is *connected* if there is a path between any two nodes.
- A path is a cycle if it starts and ends in the same node.
- A simple cycle is a cycle with at least three nodes and repeating only the first and last nodes.
- A graph is a *tree* if it is connected and has no simple cycle.
- It is root. A tree has a special designated node called its root.
- The nodes with degree 1 in a tree are called leaves.

Yu-Fang Chen (IM.NTU)

20 / 38

Graphs

- If edges in a graph are arrows, the graph is a *directed graph*.
- The number of arrows from a node is the *outdegree* of the node; the number of arrows to a node is the *indegree* of the node.
- A path whose arrows point in the same direction is a *directed* path.
- A directed graph is strongly connected if a directed path connects every two nodes.

Strings and Languages

- An *alphabet* is any finite set of *symbols*.
- A *string* over an alphabet is a finite sequence of symbols from that alphabet.
- The length of a string w, written as |w|, is the number of symbols that w contains.
- The string of length 0 is called the *empty string*, written as ε .
- The *concatenation* of x and y, written as xy, is the string obtained from appending y to the end of x.
- A *language* is a set of strings.
- More notions and terms: reverse, substring, lexicographic ordering.

3

Boolean Logic

- Boolean logic is a mathematical system built around the two Boolean values TRUE (1) and FALSE (0).
- Soolean values can be manipulated with Boolean operations: negation or NOT (¬), conjunction or AND (∧), disjunction or OR (∨).

$0 \wedge 0 \stackrel{\Delta}{=} 0$	$0 \lor 0 \stackrel{\Delta}{=} 0$	$ eg 0 \stackrel{\Delta}{=} 1$
$0 \wedge 1 \stackrel{\Delta}{=} 0$	$0 \lor 1 \stackrel{\Delta}{=} 1$	$ eg 1 \stackrel{\Delta}{=} 0$
$1 \wedge 0 riangleq 0$	$1 \lor 0 riangleq 1$	
$1 \wedge 1 \stackrel{\Delta}{=} 1$	$1 \lor 1 \stackrel{\Delta}{=} 1$	

Unknown Boolean values are represented symbolically by Boolean variables or propositions, e.g., P, Q, etc.

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (\oplus) , equality/equivalence (\leftrightarrow or \equiv), implication (\rightarrow).

$0 \oplus 0 \stackrel{\Delta}{=} 0$	$0 \leftrightarrow 0 \stackrel{\Delta}{=} 1$	$0 ightarrow 0 \stackrel{\Delta}{=} 1$
$0\oplus 1 \stackrel{\Delta}{=} 1$	$0\leftrightarrow 1\stackrel{\Delta}{=} 0$	$0 ightarrow 1 \stackrel{\Delta}{=} 1$
$1\oplus 0 \stackrel{\Delta}{=} 1$	$1 \leftrightarrow 0 \stackrel{\Delta}{=} 0$	$1 ightarrow 0 \stackrel{\Delta}{=} 0$
$1\oplus 1 \stackrel{\Delta}{=} 0$	$1 \leftrightarrow 1 \stackrel{\Delta}{=} 1$	$1 ightarrow 1 \stackrel{\Delta}{=} 1$

All in terms of conjunction and negation:

$$P \lor Q \equiv \neg(\neg P \land \neg Q) P \to Q \equiv \neg P \lor Q P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P) P \oplus Q \equiv \neg(P \leftrightarrow Q)$$

Logical Equivalences and Laws

- Two logical expressions/formulae are *equivalent* if each of them implies the other, i.e., they have the same truth value.
 - Fquivalence plays a role analogous to equality in algebra.
- 📀 Some laws of Boolean logic:
 - (Distributive) $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
 - (Distributive) $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
 - ${\overset{ heta}{
 ightarrow}}$ (De Morgan's) $eg(P ee Q) \equiv
 eg P \land
 eg Q$
 - (De Morgan's) $\neg (P \land Q) \equiv \neg P \lor \neg Q$

25 / 38

Definitions, Theorems, and Proofs

Yu-Fang Chen (IM.NTU)

Introduction and Preliminaries

Theory of Computing 2019 20

(日) (四) (日) (日) (日)

26 / 38

э

Definitions, Theorems, and Proofs

- Definitions describe the objects and notions that we use.
 Precision is essential to any definition.
- After we have defined various objects and notions, we usually make *mathematical statements* about them. Again, the statements must be precise.
- A proof is a convincing logical argument that a statement is true. The only way to determine the truth or falsity of a mathematical statement is with a mathematical proof.
- A theorem is a mathematical statement proven true. Lemmas are proven statements for assisting the proof of another more significant statement.
- Corollaries are statements seen to follow easily from other proven ones.

Finding Proofs

- Find proofs isn't always easy; no one has a recipe for it.
- Below are some helpful general strategies:
 - Carefully read the statement you want to prove.
 - 2 Rewrite the statement in your own words.
 - Break it down and consider each part separately.
 For example, P ⇐⇒ Q consists of two parts: P → Q (the forward direction) and Q → P (the reverse direction).
 - Try to get an intuitive feeling of why it should be true.

Tips for Producing a Proof

- A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from previous statements in the sequence.
- Tips for producing a proof:
 - Be patient. Finding proofs takes time.
 - Come back to it. Look over the statement, think about it, leave it, and then return some time later.
 - Be neat. Use simple, clear text and/or pictures; make it easy for others to understand.
 - Be concise. Emphasize high-level ideas, but be sure to include enough details of reasoning.

An Example Proof

Theorem

For any two sets A and B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Proof. We show that every element of $\overline{A \cup B}$ is also an element of $\overline{A \cap B}$ and vice versa.

Forward
$$(x \in \overline{A \cup B} \to x \in \overline{A} \cap \overline{B})$$
:
 $x \in \overline{A \cup B}$, def. of complement
 $\to x \notin A \cup B$, def. of union
 $\to x \in \overline{A}$ and $x \notin B$, def. of union
 $\to x \in \overline{A} \cap \overline{B}$, def. of intersection

Reverse $(x \in \overline{A} \cap \overline{B} \to x \in \overline{A \cup B})$: ...

Another Example Proof

Theorem

In any graph G, the sum of the degrees of the nodes of G is an even number.

Proof.

- Every edge in *G* connects two nodes, contributing 1 to the degree of each.
- Therefore, each edge contributes 2 to the sum of the degrees of all the nodes.
- If G has e edges, then the sum of the degrees of the nodes of G is 2e, which is even.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Another Example Proof (cont.)

Source: [Sipser 2006]

3

32 / 38

Another Example Proof (cont.)

Every time an edge is added, the sum increases by 2.

Source: [Sipser 2006]

Types of Proof

Yu-Fang Chen (IM.NTU)

Introduction and Preliminaries

Theory of Computing 2019 34 / 38

э

<ロト <問ト < 目ト < 目ト

Types of Proof

😚 Proof by construction:

prove that a particular type of object exists, by showing how to construct the object.

Proof by contradiction:

prove a statement by first assuming that the statement is false and then showing that the assumption leads to an obviously false consequence, called a contradiction.

Proof by induction:

prove that all elements of an infinite set have a specified property, by exploiting the inductive structure of the set.

Proof by Construction

Theorem

For each even number n greater than 2, there exists a 3-regular graph with n nodes.

Proof. Construct a graph G = (V, E) with $n (= 2k \ge 2)$ nodes as follows.

Let V be $\{0, 1, \ldots, n-1\}$ and E be defined as

$$\begin{array}{rl} E & = & \{\{i,i+1\} \mid \text{for } 0 \leq i \leq n-2\} \cup \\ & & \{\{n-1,0\}\} \cup \\ & & \{\{i,i+n/2\} \mid \text{for } 0 \leq i \leq n/2-1\}. \end{array}$$

Proof by Contradiction

Theorem

 $\sqrt{2}$ is irrational.

Proof. Assume toward a contradiction that $\sqrt{2}$ is rational, i.e., $\sqrt{2} = \frac{m}{n}$ for some integers *m* and *n*, which *cannot both be even*.

 $\begin{array}{ll} \sqrt{2} = \frac{m}{n} & , \mbox{ from the assumption} \\ n\sqrt{2} = m & , \mbox{ multipl. both sides by } n \\ 2n^2 = m^2 & , \mbox{ square both sides} \\ m \mbox{ is even} & , \mbox{ } m^2 \mbox{ is even} \\ 2n^2 = (2k)^2 = 4k^2 & , \mbox{ from the above two} \\ n^2 = 2k^2 & , \mbox{ divide both sides by } 2 \\ n \mbox{ is even} & , \mbox{ } n^2 \mbox{ is even} \end{array}$

Now both m and n are even, a contradiction.

37 / 38

Fallacious Arguments

Example

Show 1 = 2.

Fallacious Argument.

Let *a* and *b* be two equal positive numbers. Hence a = b. We multiply both sides by *a* and have $a^2 = ab$. Subtract b^2 from both sides, we have $a^2 - b^2 = ab - b^2$. Thus (a + b)(a - b) = b(a - b). Therefore a + b = b. Since a = b, we have 2b = b and 2 = 1.

Example

Show symmetry and transitivity imply reflexivity?

Fallacious Argument.

By symmetry, we have $x \sim y$ and thus $y \sim x$. By transitivity, $x \sim y$ and $y \sim x$ implies $x \sim x$.