Theory of Computing Introduction and Preliminaries (Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management
National Taiwan University

Overview

What It Is

- The central question:

What are the fundamental capabilities and limitations of computers?

- Three main areas:
, Automata Theory
潦 Computability Theory
, Complexity Theory

Complexity Theory

Some problems are easy and some hard.
For example, sorting is easy and scheduling is hard.

- The central question of complexity theory: What makes some problems computationally hard and others easy?
We don't have the answer to it.
- However, researchers have found a scheme for classifying problems according to their computational difficulty.
One practical application: cryptography/security.

Computability Theory

Alan Turing, among other mathematicians, discovered in the 1930s that certain basic problems cannot be solved by computers.One example is the problem of determining whether a mathematical statement is true or false.

- Theoretical models of computers developed at that time eventually lead to the construction of actual computers.
The theories of computability and complexity are closely related.
Complexity theory seeks to classify problems as easy ones and hard ones, while in computability theory the classification is by whether the problem is solvable or not.

Unsolvable Problem

Example

Write a program $T(P)$ which accepts program text P as input and returns 1 if P will terminate, 0 if not.

Solution.

It cannot be done. Suppose there is such a program T. Let us consider the following program M :
(1) if $T(M)=1$ then
(2) while true do od
(3) else $\{T(M)=0\}$
(a) exit

What is $T(M)$? Suppose $T(M)=1, M$ terminates. Therefore $T(M)=0$, or it would end in an infinite loop. On the other hand, suppose $T(M)=0, M$ does not terminate. Hence $T(M)=1$ because this is the only case where M does not terminate. Both cases are contradiction. T does not exist.

Automata Theory

The theories of computability and complexity require a precise, formal definition of a computer.

- Automata theory deals with the definitions and properties of mathematical models of computation.
- Two basic and practically useful models:
* Finite-state, or simply finite, automaton
* Context-free grammar (pushdown automaton)

Mathematical Notions and Terminology

Sets

A set is a group of (possibly infinite) objects; its objects are called elements or members.
The set without any element is called the empty set (written \emptyset).
Let A, B be sets.
. $A \cup B$ denotes the union of A and B.
6) $A \cap B$ denotes the intersection of A and B.
\bar{A} denotes the complement of A (with respect to some universe U).

潽 $A \subseteq B$ denotes that A is a subset of B.
$A \subsetneq B$ denotes that A is a proper subset of B.

- The power set of a set A (written 2^{A}) is the set consisting of all subsets of A.If the number of occurrences matters, we use multiset instead.

Sets (cont.)

FIGURE 0.1

Venn diagram for the set of English words starting with " t "

Source: [Sipser 2006]

Sets (cont.)

FIGURE 0.2

Venn diagram for the set of English words ending with " z "

Source: [Sipser 2006]

Sets (cont.)

START-t END-Z START-j

FIGURE 0.3

Overlapping circles indicate common elements

Source: [Sipser 2006]

Sets (cont.)

(a)

(b)

figure 0.4

Diagrams for (a) $A \cup B$ and (b) $A \cap B$

Source: [Sipser 2006]

Russell's Paradox

- "The Serbian barber only shaves those who do not shave themselves."
Consider the following set

$$
A=\{x: x \notin A\} .
$$

Is $A \in A$?

Sequences and Tuples

- A sequence is a (possibly infinite) list of ordered objects.

A finite sequence of k elements is also called k-tuple; a 2-tuple is also called a pair.
The Cartesian product of sets A and $B($ written $A \times B)$ is defined by

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

We can take Cartesian products of k sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
A_{1} \times A_{2} \times \cdots \times A_{k}=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right): a_{i} \in A_{i} \text { for every } 1 \leq i \leq k\right\} .
$$

- Define

$$
A^{k}=\overbrace{A \times A \times \cdots \times A}^{k} .
$$

Functions

-

A function sets up an input-output relationship, where the same input always produces the same output.
If f is a function whose output is b when the input is a, we write $f(a)=b$.
A function is also called a mapping; if $f(a)=b$, we say that f maps a to b.

Functions (cont.)

A function $f: D \rightarrow R$ maps an element in the domain D to an element in the range R.
Write $f(a)=b$ if f maps $a \in D$ to $b \in R$.
When $f: A_{1} \times A_{2} \times \cdots \times A_{k} \rightarrow B$, we say f is a k-ary function and k is the arity of f.
When $k=1, f$ is a unary function.
When $k=2, f$ is a binary function.

Relations

A predicate, or property, is a function whose range is \{TRUE,FALSE $\}$.
A predicate whose domain is a set of k-tuples $A \times \ldots \times A$ is called a (k-ary) relation on A.
A 2-ary relation is also called a binary relation.

Equivalence Relations

- An equivalence relation is a special type of binary relation that captures the notion of two objects being equal in some sense.
A binary relation R on A is an equivalence relation if
(1) R is reflexive (for every x in $A, x R x$),
(2) R is symmetric (for every x and y in $A, x R y$ if and only if $y R x$), and
(3) R is transitive (for every x, y, and z in $A, x R y$ and $y R z$ implies $x R z)$.

Graphs

An undirected graph (or a graph) consists of a set of nodes (or vertices) and a set of edges.

- The number of edges attached to a node is the degree of the node.
- A graph G is a subgraph of a graph H if the nodes of G are a subset of nodes of H, and the edges of G are those of H on the corresponding nodes.
A path is a sequence of nodes connected by edges.
A simple path is a path without repetitive nodes.
A graph is connected if there is a path between any two nodes.
A path is a cycle if it starts and ends in the same node.
A simple cycle is a cycle with at least three nodes and repeating only the first and last nodes.
- A graph is a tree if it is connected and has no simple cycle.

A tree has a special designated node called its root.
The nodes with degree 1 in a tree are called leaves.

Graphs

If edges in a graph are arrows, the graph is a directed graph.

- The number of arrows from a node is the outdegree of the node; the number of arrows to a node is the indegree of the node.
A path whose arrows point in the same direction is a directed path.
A directed graph is strongly connected if a directed path connects every two nodes.

Strings and Languages

- An alphabet is any finite set of symbols.
- A string over an alphabet is a finite sequence of symbols from that alphabet.
The length of a string w, written as $|w|$, is the number of symbols that w contains.
The string of length 0 is called the empty string, written as ε.
The concatenation of x and y, written as $x y$, is the string obtained from appending y to the end of x.A language is a set of strings.
More notions and terms: reverse, substring, lexicographic ordering.

Boolean Logic

Boolean logic is a mathematical system built around the two Boolean values TRUE (1) and FALSE (0).

- Boolean values can be manipulated with Boolean operations: negation or NOT (\neg), conjunction or AND (\wedge), disjunction or OR (V).

$$
\begin{array}{lll}
0 \wedge 0 \triangleq 0 & 0 \vee 0 \triangleq 0 & \neg 0 \triangleq 1 \\
0 \wedge 1 \triangleq 0 & 0 \vee 1 \triangleq 1 & \neg 1 \triangleq 0 \\
1 \wedge 0 \triangleq 0 & 1 \vee 0 \triangleq 1 & \\
1 \wedge 1 \triangleq 1 & 1 \vee 1 \triangleq 1 &
\end{array}
$$

- Unknown Boolean values are represented symbolically by Boolean variables or propositions, e.g., P, Q, etc.

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (\oplus), equality/equivalence (\leftrightarrow or \equiv), implication (\rightarrow).

$$
\begin{array}{lll}
0 \oplus 0 \triangleq 0 & 0 \leftrightarrow 0 \triangleq 1 & 0 \rightarrow 0 \triangleq 1 \\
0 \oplus 1 \triangleq 1 & 0 \leftrightarrow 1 \triangleq 0 & 0 \rightarrow 1 \triangleq 1 \\
1 \oplus 0 \triangleq 1 & 1 \leftrightarrow 0 \triangleq 0 & 1 \rightarrow 0 \triangleq 0 \\
1 \oplus 1 \triangleq 0 & 1 \leftrightarrow 1 \triangleq 1 & 1 \rightarrow 1 \triangleq 1
\end{array}
$$

All in terms of conjunction and negation:

$$
\begin{aligned}
& P \vee Q \equiv \neg(\neg P \wedge \neg Q) \\
& P \rightarrow Q \equiv \neg P \vee Q \\
& P \leftrightarrow Q \equiv(P \rightarrow Q) \wedge(Q \rightarrow P) \\
& P \oplus Q \equiv \neg(P \leftrightarrow Q)
\end{aligned}
$$

Logical Equivalences and Laws

- Two logical expressions/formulae are equivalent if each of them implies the other, i.e., they have the same truth value.
Equivalence plays a role analogous to equality in algebra.
- Some laws of Boolean logic:

```
(Distributive) \(P \wedge(Q \vee R) \equiv(P \wedge Q) \vee(P \wedge R)\)
(Distributive) \(P \vee(Q \wedge R) \equiv(P \vee Q) \wedge(P \vee R)\)
(De Morgan's) \(\neg(P \vee Q) \equiv \neg P \wedge \neg Q\)
(De Morgan's) \(\neg(P \wedge Q) \equiv \neg P \vee \neg Q\)
```


Definitions, Theorems, and Proofs

Definitions, Theorems, and Proofs

- Definitions describe the objects and notions that we use. Precision is essential to any definition.
- After we have defined various objects and notions, we usually make mathematical statements about them. Again, the statements must be precise.
A proof is a convincing logical argument that a statement is true. The only way to determine the truth or falsity of a mathematical statement is with a mathematical proof.
A theorem is a mathematical statement proven true. Lemmas are proven statements for assisting the proof of another more significant statement.
Corollaries are statements seen to follow easily from other proven ones.

Finding Proofs

Find proofs isn't always easy; no one has a recipe for it.
Below are some helpful general strategies:
(1) Carefully read the statement you want to prove.
(2) Rewrite the statement in your own words.
(3) Break it down and consider each part separately. For example, $P \Longleftrightarrow Q$ consists of two parts: $P \rightarrow Q$ (the forward direction) and $Q \rightarrow P$ (the reverse direction).
(9) Try to get an intuitive feeling of why it should be true.

Tips for Producing a Proof

A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from previous statements in the sequence.

- Tips for producing a proof:
* Be patient. Finding proofs takes time.
* Come back to it. Look over the statement, think about it, leave it, and then return some time later.
Be neat. Use simple, clear text and/or pictures; make it easy for others to understand.
© Be concise. Emphasize high-level ideas, but be sure to include enough details of reasoning.

An Example Proof

Theorem

For any two sets A and $B, \overline{A \cup B}=\bar{A} \cap \bar{B}$.
Proof. We show that every element of $\overline{A \cup B}$ is also an element of $\bar{A} \cap \bar{B}$ and vice versa.

Forward ($x \in \overline{A \cup B} \rightarrow x \in \bar{A} \cap \bar{B}$):

$$
x \in \overline{A \cup B}
$$

$\rightarrow x \notin A \cup B \quad$, def. of complement
$\rightarrow x \notin A$ and $x \notin B \quad$, def. of union
$\rightarrow x \in \bar{A}$ and $x \in \bar{B} \quad$, def. of complement
$\rightarrow x \in \bar{A} \cap \bar{B} \quad$, def. of intersection
Reverse $(x \in \bar{A} \cap \bar{B} \rightarrow x \in \overline{A \cup B}): \ldots$

Another Example Proof

Theorem

In any graph G, the sum of the degrees of the nodes of G is an even number.

Proof.

Every edge in G connects two nodes, contributing 1 to the degree of each.
Therefore, each edge contributes 2 to the sum of the degrees of all the nodes.
If G has e edges, then the sum of the degrees of the nodes of G is $2 e$, which is even.

Another Example Proof (cont.)

$\begin{aligned} \text { sum } & =2+2+2 \\ & =6\end{aligned}$

$$
=6
$$

$$
\begin{aligned}
\text { sum } & =2+3+4+3+2 \\
& =14
\end{aligned}
$$

Source: [Sipser 2006]

Another Example Proof (cont.)

Every time an edge is added, the sum increases by 2 .

Source: [Sipser 2006]

Types of Proof

Types of Proof

- Proof by construction:
prove that a particular type of object exists, by showing how to construct the object.
- Proof by contradiction:
prove a statement by first assuming that the statement is false and then showing that the assumption leads to an obviously false consequence, called a contradiction.
- Proof by induction:
prove that all elements of an infinite set have a specified property, by exploiting the inductive structure of the set.

Proof by Construction

Theorem

For each even number n greater than 2, there exists a 3-regular graph with n nodes.

Proof. Construct a graph $G=(V, E)$ with $n(=2 k \geq 2)$ nodes as follows.

Let V be $\{0,1, \ldots, n-1\}$ and E be defined as

$$
\begin{aligned}
E= & \{\{i, i+1\} \mid \text { for } 0 \leq i \leq n-2\} \cup \\
& \{\{n-1,0\}\} \cup \\
& \{\{i, i+n / 2\} \mid \text { for } 0 \leq i \leq n / 2-1\}
\end{aligned}
$$

Proof by Contradiction

Theorem

$\sqrt{2}$ is irrational.
Proof. Assume toward a contradiction that $\sqrt{2}$ is rational, i.e., $\sqrt{2}=\frac{m}{n}$ for some integers m and n, which cannot both be even.
$\sqrt{2}=\frac{m}{n} \quad$, from the assumption
$n \sqrt{2}=m \quad$, multipl. both sides by n
$2 n^{2}=m^{2} \quad$, square both sides
m is even
, m^{2} is even
$2 n^{2}=(2 k)^{2}=4 k^{2} \quad$, from the above two
$n^{2}=2 k^{2}$
n is even
, divide both sides by 2
, n^{2} is even

Now both m and n are even, a contradiction.

Fallacious Arguments

Example

Show $1=2$.

Fallacious Argument.

Let a and b be two equal positive numbers. Hence $a=b$. We multiply both sides by a and have $a^{2}=a b$. Subtract b^{2} from both sides, we have $a^{2}-b^{2}=a b-b^{2}$. Thus $(a+b)(a-b)=b(a-b)$. Therefore $a+b=b$. Since $a=b$, we have $2 b=b$ and $2=1$.

Example

Show symmetry and transitivity imply reflexivity?

Fallacious Argument.

By symmetry, we have $x \sim y$ and thus $y \sim x$. By transitivity, $x \sim y$ and $y \sim x$ implies $x \sim x$.

