
Theory of Computing
Introduction and Preliminaries
(Based on [Sipser 2006, 2013])

Yu-Fang Chen

Department of Information Management
National Taiwan University

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 1 / 38

Overview

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 2 / 38

What It Is

The central question:

What are the fundamental capabilities and limitations of
computers?

Three main areas:

Automata Theory
Computability Theory
Complexity Theory

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 3 / 38

Complexity Theory

Some problems are easy and some hard.
For example, sorting is easy and scheduling is hard.

The central question of complexity theory:
What makes some problems computationally hard and others
easy?

We don’t have the answer to it.

However, researchers have found a scheme for classifying
problems according to their computational difficulty.

One practical application: cryptography/security.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 4 / 38

Computability Theory

Alan Turing, among other mathematicians, discovered in the
1930s that certain basic problems cannot be solved by
computers.

One example is the problem of determining whether a
mathematical statement is true or false.

Theoretical models of computers developed at that time
eventually lead to the construction of actual computers.

The theories of computability and complexity are closely related.

Complexity theory seeks to classify problems as easy ones and
hard ones, while in computability theory the classification is by
whether the problem is solvable or not.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 5 / 38

Unsolvable Problem

Example
Write a program T (P) which accepts program text P as input and returns 1 if P
will terminate, 0 if not.

Solution.
It cannot be done. Suppose there is such a program T . Let us consider the
following program M:

1 if T (M) = 1 then

2 while true do od

3 else {T (M) = 0}
4 exit

What is T (M)? Suppose T (M) = 1, M terminates. Therefore T (M) = 0, or it
would end in an infinite loop. On the other hand, suppose T (M) = 0, M does
not terminate. Hence T (M) = 1 because this is the only case where M does not
terminate. Both cases are contradiction. T does not exist.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 6 / 38

Automata Theory

The theories of computability and complexity require a precise,
formal definition of a computer.

Automata theory deals with the definitions and properties of
mathematical models of computation.

Two basic and practically useful models:

Finite-state, or simply finite, automaton
Context-free grammar (pushdown automaton)

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 7 / 38

Mathematical Notions and Terminology

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 8 / 38

Sets

A set is a group of (possibly infinite) objects; its objects are
called elements or members.

The set without any element is called the empty set (written ∅).

Let A,B be sets.

A ∪ B denotes the union of A and B.
A ∩ B denotes the intersection of A and B.
A denotes the complement of A (with respect to some universe
U).
A ⊆ B denotes that A is a subset of B.
A (B denotes that A is a proper subset of B.

The power set of a set A (written 2A) is the set consisting of all
subsets of A.

If the number of occurrences matters, we use multiset instead.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 9 / 38

Sets (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 10 / 38

Sets (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 11 / 38

Sets (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 12 / 38

Sets (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 13 / 38

Russell’s Paradox

“The Serbian barber only shaves those who do not shave
themselves.”

Consider the following set

A = {x : x 6∈ A}.

Is A ∈ A?

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 14 / 38

Sequences and Tuples

A sequence is a (possibly infinite) list of ordered objects.

A finite sequence of k elements is also called k-tuple; a 2-tuple
is also called a pair.

The Cartesian product of sets A and B (written A× B) is
defined by

A× B = {(a, b) : a ∈ A and b ∈ B}.

We can take Cartesian products of k sets A1,A2, . . . ,Ak

A1×A2×· · ·×Ak = {(a1, a2, . . . , ak) : ai ∈ Ai for every 1 ≤ i ≤ k}.

Define

Ak =

k︷ ︸︸ ︷
A× A× · · · × A .

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 15 / 38

Functions

A function sets up an input-output relationship, where the same
input always produces the same output.

If f is a function whose output is b when the input is a, we write
f (a) = b.

A function is also called a mapping; if f (a) = b, we say that f
maps a to b.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 16 / 38

Functions (cont.)

A function f : D → R maps an element in the domain D to an
element in the range R .

Write f (a) = b if f maps a ∈ D to b ∈ R .

When f : A1 × A2 × · · · × Ak → B , we say f is a k-ary function
and k is the arity of f .

When k = 1, f is a unary function.
When k = 2, f is a binary function.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 17 / 38

Relations

A predicate, or property, is a function whose range is
{TRUE,FALSE}.
A predicate whose domain is a set of k-tuples A× . . .× A is
called a (k-ary) relation on A.

A 2-ary relation is also called a binary relation.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 18 / 38

Equivalence Relations

An equivalence relation is a special type of binary relation that
captures the notion of two objects being equal in some sense.

A binary relation R on A is an equivalence relation if
1 R is reflexive (for every x in A, xRx),
2 R is symmetric (for every x and y in A, xRy if and only if yRx),

and
3 R is transitive (for every x , y , and z in A, xRy and yRz implies

xRz).

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 19 / 38

Graphs
An undirected graph (or a graph) consists of a set of nodes (or
vertices) and a set of edges.
The number of edges attached to a node is the degree of the
node.
A graph G is a subgraph of a graph H if the nodes of G are a
subset of nodes of H , and the edges of G are those of H on the
corresponding nodes.
A path is a sequence of nodes connected by edges.
A simple path is a path without repetitive nodes.
A graph is connected if there is a path between any two nodes.
A path is a cycle if it starts and ends in the same node.
A simple cycle is a cycle with at least three nodes and repeating
only the first and last nodes.
A graph is a tree if it is connected and has no simple cycle.
A tree has a special designated node called its root.
The nodes with degree 1 in a tree are called leaves.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 20 / 38

Graphs

If edges in a graph are arrows, the graph is a directed graph.

The number of arrows from a node is the outdegree of the node;
the number of arrows to a node is the indegree of the node.

A path whose arrows point in the same direction is a directed
path.

A directed graph is strongly connected if a directed path
connects every two nodes.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 21 / 38

Strings and Languages

An alphabet is any finite set of symbols.

A string over an alphabet is a finite sequence of symbols from
that alphabet.

The length of a string w , written as |w |, is the number of
symbols that w contains.

The string of length 0 is called the empty string, written as ε.

The concatenation of x and y , written as xy , is the string
obtained from appending y to the end of x .

A language is a set of strings.

More notions and terms: reverse, substring, lexicographic
ordering.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 22 / 38

Boolean Logic

Boolean logic is a mathematical system built around the two
Boolean values TRUE (1) and FALSE (0).

Boolean values can be manipulated with Boolean operations:
negation or NOT (¬), conjunction or AND (∧), disjunction or
OR (∨).

0 ∧ 0
∆
= 0 0 ∨ 0

∆
= 0 ¬0

∆
= 1

0 ∧ 1
∆
= 0 0 ∨ 1

∆
= 1 ¬1

∆
= 0

1 ∧ 0
∆
= 0 1 ∨ 0

∆
= 1

1 ∧ 1
∆
= 1 1 ∨ 1

∆
= 1

Unknown Boolean values are represented symbolically by
Boolean variables or propositions, e.g., P , Q, etc.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 23 / 38

Boolean Logic (cont.)

Additional Boolean operations: exclusive or or XOR (⊕),
equality/equivalence (↔ or ≡), implication (→).

0⊕ 0
∆
= 0 0↔ 0

∆
= 1 0→ 0

∆
= 1

0⊕ 1
∆
= 1 0↔ 1

∆
= 0 0→ 1

∆
= 1

1⊕ 0
∆
= 1 1↔ 0

∆
= 0 1→ 0

∆
= 0

1⊕ 1
∆
= 0 1↔ 1

∆
= 1 1→ 1

∆
= 1

All in terms of conjunction and negation:

P ∨ Q ≡ ¬(¬P ∧ ¬Q)
P → Q ≡ ¬P ∨ Q
P ↔ Q ≡ (P → Q) ∧ (Q → P)
P ⊕ Q ≡ ¬(P ↔ Q)

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 24 / 38

Logical Equivalences and Laws

Two logical expressions/formulae are equivalent if each of them
implies the other, i.e., they have the same truth value.

Equivalence plays a role analogous to equality in algebra.

Some laws of Boolean logic:

(Distributive) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)
(Distributive) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)
(De Morgan’s) ¬(P ∨ Q) ≡ ¬P ∧ ¬Q
(De Morgan’s) ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 25 / 38

Definitions, Theorems, and Proofs

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 26 / 38

Definitions, Theorems, and Proofs

Definitions describe the objects and notions that we use.
Precision is essential to any definition.

After we have defined various objects and notions, we usually
make mathematical statements about them. Again, the
statements must be precise.

A proof is a convincing logical argument that a statement is
true. The only way to determine the truth or falsity of a
mathematical statement is with a mathematical proof.

A theorem is a mathematical statement proven true. Lemmas
are proven statements for assisting the proof of another more
significant statement.

Corollaries are statements seen to follow easily from other
proven ones.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 27 / 38

Finding Proofs

Find proofs isn’t always easy; no one has a recipe for it.

Below are some helpful general strategies:

1 Carefully read the statement you want to prove.
2 Rewrite the statement in your own words.
3 Break it down and consider each part separately.

For example, P ⇐⇒ Q consists of two parts: P → Q (the
forward direction) and Q → P (the reverse direction).

4 Try to get an intuitive feeling of why it should be true.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 28 / 38

Tips for Producing a Proof

A well-written proof is a sequence of statements, wherein each
one follows by simple reasoning from previous statements in the
sequence.

Tips for producing a proof:

Be patient. Finding proofs takes time.
Come back to it. Look over the statement, think about it, leave
it, and then return some time later.
Be neat. Use simple, clear text and/or pictures; make it easy for
others to understand.
Be concise. Emphasize high-level ideas, but be sure to include
enough details of reasoning.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 29 / 38

An Example Proof

Theorem

For any two sets A and B, A ∪ B = A ∩ B.

Proof. We show that every element of A ∪ B is also an element of
A ∩ B and vice versa.

Forward (x ∈ A ∪ B → x ∈ A ∩ B):
x ∈ A ∪ B

→ x 6∈ A ∪ B , def. of complement
→ x 6∈ A and x 6∈ B , def. of union
→ x ∈ A and x ∈ B , def. of complement
→ x ∈ A ∩ B , def. of intersection

Reverse (x ∈ A ∩ B → x ∈ A ∪ B): . . .

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 30 / 38

Another Example Proof

Theorem
In any graph G, the sum of the degrees of the nodes of G is an even
number.

Proof.

Every edge in G connects two nodes, contributing 1 to the
degree of each.

Therefore, each edge contributes 2 to the sum of the degrees of
all the nodes.

If G has e edges, then the sum of the degrees of the nodes of G
is 2e, which is even.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 31 / 38

Another Example Proof (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 32 / 38

Another Example Proof (cont.)

Source: [Sipser 2006]

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 33 / 38

Types of Proof

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 34 / 38

Types of Proof

Proof by construction:
prove that a particular type of object exists, by showing how to
construct the object.

Proof by contradiction:
prove a statement by first assuming that the statement is false
and then showing that the assumption leads to an obviously
false consequence, called a contradiction.

Proof by induction:
prove that all elements of an infinite set have a specified
property, by exploiting the inductive structure of the set.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 35 / 38

Proof by Construction

Theorem
For each even number n greater than 2, there exists a 3-regular graph
with n nodes.

Proof. Construct a graph G = (V ,E) with n (= 2k ≥ 2) nodes as
follows.

Let V be {0, 1, . . . , n − 1} and E be defined as

E = {{i , i + 1} | for 0 ≤ i ≤ n − 2} ∪
{{n − 1, 0}} ∪
{{i , i + n/2} | for 0 ≤ i ≤ n/2− 1}.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 36 / 38

Proof by Contradiction

Theorem
√

2 is irrational.

Proof. Assume toward a contradiction that
√

2 is rational, i.e.,√
2 = m

n
for some integers m and n, which cannot both be even.

√
2 = m

n
, from the assumption

n
√

2 = m , multipl. both sides by n
2n2 = m2 , square both sides
m is even , m2 is even
2n2 = (2k)2 = 4k2 , from the above two
n2 = 2k2 , divide both sides by 2
n is even , n2 is even

Now both m and n are even, a contradiction.

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 37 / 38

Fallacious Arguments

Example
Show 1 = 2.

Fallacious Argument.
Let a and b be two equal positive numbers. Hence a = b. We
multiply both sides by a and have a2 = ab. Subtract b2 from both
sides, we have a2 − b2 = ab − b2. Thus (a + b)(a − b) = b(a − b).
Therefore a + b = b. Since a = b, we have 2b = b and 2 = 1.

Example
Show symmetry and transitivity imply reflexivity?

Fallacious Argument.
By symmetry, we have x ∼ y and thus y ∼ x . By transitivity, x ∼ y
and y ∼ x implies x ∼ x .

Yu-Fang Chen (IM.NTU) Introduction and Preliminaries Theory of Computing 2019 38 / 38

	Overview
	Mathematical Notions and Terminology
	Definitions, Theorems, and Proofs
	Types of Proof

