An Introduction to Automata Learning

Yu-Fang Chen Department of Information Management Academia Sinica

Before we start

- Have you played the game of number guessing?
- Let's guess finite automata!

Models

- Allow predictions and analysis of the behaviors of complex systems.
- Forms of models:
 - Formula: e.g., $E = MC^2$
 - Finite state machine/automata.

A Video about Model Learning

How to Obtain the Model?

- Read the manual
- Experiments
 - 10 5 Coffee (good)
 - 10 10 Coffee (bad)
 - -555 Coffee (good)
 - 5 🕑 5 10 Tea (good)

The L* Learning Algorithm

• Proposed by Dana Angluin [Info.&Comp. 1987] and improved by Rivest *et al.* [Info.&Comp. 1993]

Myhill-Nerode Theorm

• Given a language L, we define a equivalence relation as follows.

 $x \equiv_L y \text{ iff } \forall z \in \Sigma^* : xz \in L \leftrightarrow xy \in L.$

- L is regular iff \equiv_L form a finite number of equivalence classes
- Each equivalence class corresponds to a state of the minimal DFA of L

Observation Table

E: Distinguishing Experiments

L*: Initial Setting

Target: (ab+aab)*

L*: Fill Up the Table by Membership Queries

L*: Table Expansion

Move a to the S set and expand the table with elements aa and ab

Target: (ab+aab)*

L*: A Closed Table

We say that the table is **closed** because every row in the S Σ set appears somewhere in the S set

Target: (ab+aab)*

L*: Making a Conjecture

Counterexample: bb

 $\delta(s, a) = s'$ iff sa and s' have the same row.

A suffix **b** is extracted from **bb** as a valid distinguishing experiment

Target: (ab+aab)*

Theorem:

At least one suffix of the counterexample is a valid distinguishing experiment

L*: 2nd Iteration

Add b to the E set, fill up and expand the table following the same procedure

L*: 3rd Iteration (Completed)

Add ab to the E set, fill up and expand the table following the same procedure

Theorem:

The DFA produced by L* is the minimal DFA that recognizes that target language Institute of Information Science, Academia Sinica

L*: Complexity

- Complexity:
 - Equivalence query: at most *n*-1
 - Membership query: $O(|\Sigma|n^2 + n \log m)$

	λ	b	ab
λ	Т	F	Т
a	\mathbf{F}	Т	Т
b	F	\mathbf{F}	\mathbf{F}
aa	F	Т	\mathbf{F}
ab	Т	F	Т
ba	\mathbf{F}	\mathbf{F}	\mathbf{F}
bb	\mathbf{F}	\mathbf{F}	\mathbf{F}
aaa	F	\mathbf{F}	\mathbf{F}
aab	Т	\mathbf{F}	Т

Note: n is the size of the minimal DFA that recognizes L, m is the length of the longest counterexample returned from the teacher.

Exercise

Let's play with it.
– Any volunteer?

Counterexample Analysis

Construct a DFA from the learned equivalence classes

Counterexample: bb

A suffix b is extracted from bb as a valid distinguishing experiment

Target: (ab+aab)*

Theorem: At least one suffix of the counterexample is a valid distinguishing experiment

Counterexample Analysis

Counterexample: bb

A suffix b is extracted from bb as a valid distinguishing experiment

Target: (ab+aab)*

[bb]= empty word	is in the target language		
bb	is not in the target language		

Exercise

• Let's play with it.

- 2 people as a group.

 Using classification tree instead of observation table

Figure 8.1: (a) Finite automaton counting the number of 1's in the input 3 mod 4. (b) A classification tree for this automaton.

Initialization:

- Do a membership query on the string λ to determine whether the start state of M is accepting or rejecting.
- Construct a hypothesis automaton that consists simply of this single (accepting or rejecting) state with self-loops for both the 0 and 1 transitions.
- Perform an equivalence query on this automaton; let the counterexample string be γ.
- Initialize the classification tree T to have a root labeled with the distinguishing string λ and two leaves labeled with access strings λ and γ .

Initialization:

- Do a membership query on the string λ to determine whether the start state of M is accepting or rejecting.
- Construct a hypothesis automaton that consists simply of this single (accepting or rejecting) state with self-loops for both the 0 and 1 transitions.
- Perform an equivalence query on this automaton; let the counterexample string be γ.
- Initialize the classification tree T to have a root labeled with the distinguishing string λ and two leaves labeled with access strings λ and γ .

Theorem: At least one suffix of the counterexample is a valid distinguishing experiment

b

Counterexample: bb

A suffix b is extracted from bb as a valid distinguishing experiment

Target: (ab+aab)*

A suffix b is extracted from bb as a valid distinguishing experiment

Target: (ab+aab)*

aa

Counterexample: aaab

A suffix ab is extracted from aaab as a valid distinguishing experiment

Counterexample: aaab

A suffix ab is extracted from aaab as a valid distinguishing experiment

Target: (ab+aab)*

Compare the two algorithms

More Equivalence Queries

	λ	b	ab
λ	Т	\mathbf{F}	Т
a	\mathbf{F}	Т	Т
b	\mathbf{F}	\mathbf{F}	F
aa	F	Т	\mathbf{F}
ab	Т	\mathbf{F}	Т
ba	\mathbf{F}	\mathbf{F}	F
bb	\mathbf{F}	\mathbf{F}	F
aaa	F	\mathbf{F}	\mathbf{F}
aab	Т	\mathbf{F}	Т

More Membership Queries

Implementations

LEARNLIB a framework for automata learning

https://learnlib.de

libalf: The Automata Learning Framework

A comprehensive, open-source library for learning finite-state automata

http://libalf.informatik.rwth-aachen.de

Applications

- Regression testing of telecommunication systems at Siemens
- Integration testing at France Telecom
- Automatic testing of an online conference service of Springer Verlag
- Testing requirements of a brake-by-wire system from Volvo Technology

Source: Frits Vaandrager, CACM, Vol. 60 No. 2, Pages 86-95

Applications: learning from gray box

- Program verification/testing:
 - Models the the sequences of events of the program under test
- Examples:
 - Decision sequence e.g., TFTTTF
 - Call sequence e.g., foo() bar() bar()
 - Label sequence

Equivalence Queries?

- PAC learning:
 - Sample according to a distribution of historical user behavior.
 - Replace equivalence query with membership queries.
- Conformance testing

